Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.2.1. Anthropometric Measurements
2.2.2. RMR Measurement and Prediction
2.2.3. Statistics
3. Results
3.1. Subject Characteristics
3.2. Measured RMR vs. Predicted RMR
3.3. Correlation between Measured RMR and Predicted RMR
3.4. Agreement between Measured RMR and Predicted RMR
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Selman, C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003, 62, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, W.C. Controversies in the determination of energy requirements. Proc. Nutr. Soc. 2007, 66, 367–377. [Google Scholar] [CrossRef] [Green Version]
- McMurray, R.G.; Soares, J.; Caspersen, C.J.; McCurdy, T. Examining variations of resting metabolic rate of adults: A public health perspective. Med. Sci. Sports Exerc. 2014, 46, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Flack, K.D.; Siders, W.A.; Johnson, L.; Roemmich, J.N. Cross-Validation of Resting Metabolic Rate Prediction Equations. J. Acad. Nutr. Diet. 2016, 116, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, M.H.; Kim, G.S.; Park, J.S.; Kim, E.K. Accuracy of predictive equations for resting metabolic rate in Korean athletic and non-athletic adolescents. Nutr. Res. Pract. 2015, 9, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef]
- Henes, S.T.; Cummings, D.M.; Hickner, R.C.; Houmard, J.A.; Kolasa, K.M.; Lazorick, S.; Collier, D.N. Comparison of predictive equations and measured resting energy expenditure among obese youth attending a pediatric healthy weight clinic: One size does not fit all. Nutr. Clin. Pract. 2013, 28, 617–624. [Google Scholar] [CrossRef]
- Reidlinger, D.P.; Willis, J.M.; Whelan, K. Resting metabolic rate and anthropometry in older people: A comparison of measured and calculated values. J. Hum. Nutr. Diet. 2015, 28, 72–84. [Google Scholar] [CrossRef]
- Yao, E.; Buchholz, A.C.; Edwards, A.M.; Simpson, J.A. Predicted and measured resting metabolic rate in young, non-obese women. Can. J. Diet. Pract. Res. 2013, 74, 124–130. [Google Scholar] [CrossRef]
- Liu, B.; Woo, J.; Tang, N.; Ng, K.; Ip, R.; Yu, A. Assessment of total energy expenditure in a Chinese population by a physical activity questionnaire: Examination of validity. Int. J. Food Sci. Nutr. 2001, 52, 269–282. [Google Scholar] [CrossRef]
- Liu, H.Y.; Lu, Y.F.; Chen, W.J. Predictive equations for basal metabolic rate in Chinese adults: A cross-validation study. J. Am. Diet. Assoc. 1995, 95, 1403–1408. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Mao, D.; Zeng, G.; Zhuo, Q.; Hu, W.; Piao, J.; Yang, X.; Huang, C. Basal energy expenditure in southern Chinese healthy adults: Measurement and development of a new equation. Br. J. Nutr. 2010, 104, 1817–1823. [Google Scholar] [CrossRef]
- Camps, S.G.; Wang, N.X.; Tan, W.S.; Henry, C.J. Estimation of basal metabolic rate in Chinese: Are the current prediction equations applicable. Nutr. J. 2016, 15, 79. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Rao, Z.Y.; Wu, X.T.; Liang, B.M.; Wang, M.Y.; Hu, W. Comparison of five equations for estimating resting energy expenditure in Chinese young, normal weight healthy adults. Eur. J. Med. Res. 2012, 17, 26. [Google Scholar] [CrossRef]
- Song, T.; Venkataraman, K.; Gluckman, P.; Seng, C.Y.; Meng, K.C.; Khoo, E.Y.; Leow, M.K.; Seng, L.Y.; Shyong, T.E. Validation of prediction equations for resting energy expenditure in Singaporean Chinese men. Obes. Res. Clin. Pract. 2014, 8, e201–e298. [Google Scholar] [CrossRef]
- Müller, M.J.; Langemann, D.; Gehrke, I.; Later, W.; Heller, M.; Glüer, C.C.; Heymsfield, S.B.; Bosy-Westphal, A. Effect of constitution on mass of individual organs and their association with metabolic rate in humans—A detailed view on allometric scaling. PLoS ONE 2011, 6, e22732. [Google Scholar] [CrossRef]
- Chen, K.T.; Chen, Y.Y.; Wang, C.W.; Chuang, C.L.; Chiang, L.M.; Lai, C.L.; Lu, H.K.; Dwyer, G.B.; Chao, S.P.; Shih, M.K.; et al. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population. PLoS ONE 2016, 11, e0160105. [Google Scholar] [CrossRef]
- WEIR, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Wang, Z.; Heshka, S.; Gallagher, D.; Boozer, C.N.; Kotler, D.P.; Heymsfield, S.B. Resting energy expenditure-fat-free mass relationship: New insights provided by body composition modeling. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E539–E545. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Applying the right statistics: Analyses of measurement studies. Ultrasound Obs. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef]
- Marra, M.; Cioffi, I.; Sammarco, R.; Santarpia, L.; Contaldo, F.; Scalfi, L.; Pasanisi, F. Are Raw BIA Variables Useful for Predicting Resting Energy Expenditure in Adults with Obesity. Nutrients 2019, 11, 216. [Google Scholar] [CrossRef]
- Byrne, N.M.; Hills, A.P.; Hunter, G.R.; Weinsier, R.L.; Schutz, Y. Metabolic equivalent: One size does not fit all. J. Appl. Physiol. 2005, 99, 1112–1119. [Google Scholar] [CrossRef]
- Hasson, R.E.; Howe, C.A.; Jones, B.L.; Freedson, P.S. Accuracy of four resting metabolic rate prediction equations: Effects of sex, body mass index, age, and race/ethnicity. J. Sci. Med. Sport 2011, 14, 344–351. [Google Scholar] [CrossRef]
- Spaeth, A.M.; Dinges, D.F.; Goel, N. Resting metabolic rate varies by race and by sleep duration. Obesity 2015, 23, 2349–2356. [Google Scholar] [CrossRef] [Green Version]
- Leung, R.; Woo, J.; Chan, D.; Tang, N. Validation of prediction equations for basal metabolic rate in chinese subjects. Eur. J. Clin. Nutr. 2000, 54, 551–554. [Google Scholar] [CrossRef]
- Müller, M.J.; Bosy-Westphal, A.; Kutzner, D.; Heller, M. Metabolically active components of fat-free mass and resting energy expenditure in humans: Recent lessons from imaging technologies. Obes. Rev. 2002, 3, 113–122. [Google Scholar] [CrossRef]
- Siervo, M.; Boschi, V.; Falconi, C. Which REE prediction equation should we use in normal-weight, overweight and obese women. Clin. Nutr. 2003, 22, 193–204. [Google Scholar] [CrossRef]
- Wouters-Adriaens, M.P.; Westerterp, K.R. Low resting energy expenditure in Asians can be attributed to body composition. Obesity 2008, 16, 2212–2216. [Google Scholar] [CrossRef]
- Javed, F.; He, Q.; Davidson, L.E.; Thornton, J.C.; Albu, J.; Boxt, L.; Krasnow, N.; Elia, M.; Kang, P.; Heshka, S.; et al. Brain and high metabolic rate organ mass: Contributions to resting energy expenditure beyond fat-free mass. Am. J. Clin. Nutr. 2010, 91, 907–912. [Google Scholar] [CrossRef]
- Case, K.O.; Brahler, C.J.; Heiss, C. Resting energy expenditures in Asian women measured by indirect calorimetry are lower than expenditures calculated from prediction equations. J. Am. Diet. Assoc. 1997, 97, 1288–1292. [Google Scholar] [CrossRef]
- Henry, C.J.; Piggott, S.; Emery, B. Basal metabolic rate and diet-induced thermogenesis in Asians living in Britain. Hum. Nutr. Clin. Nutr. 1987, 41, 397–402. [Google Scholar]
- Ulijaszek, S.J.; Strickland, S.S. Basal metabolic rate and physique of Gurkha and British soldiers stationed in Britain. Ann. Hum. Biol. 1991, 18, 245–251. [Google Scholar] [CrossRef]
- Henry, C.J.; Rees, D.G. New predictive equations for the estimation of basal metabolic rate in tropical peoples. Eur. J. Clin. Nutr. 1991, 45, 177–185. [Google Scholar]
- Lawrence, M.; Thongprasert, K.; Durnin, J.V. Between-group differences in basal metabolic rates: An analysis of data collected in Scotland, the Gambia and Thailand. Eur. J. Clin. Nutr. 1988, 42, 877–891. [Google Scholar]
- De Boer, J.O.; van Es, A.J.; Voorrips, L.E.; Blokstra, F.; Vogt, J.E. Energy metabolism and requirements in different ethnic groups. Eur. J. Clin. Nutr. 1988, 42, 983–997. [Google Scholar]
Equation Source | Population | Equation | Units |
---|---|---|---|
Harris–Benedict (1919) | Males | 66 + (13.7 × weight kg) + (5 × height cm) − (6.8 × age years) | kcal/day |
Females | 655 + (9.5 × weight kg) + (1.9 × height cm) + (4.7 × age years) | kcal/day | |
Schofield (1985) | Males (≤30 years) | 15.057 × weight kg + 692.2 | kcal/day |
Females (≤30 years) | 14.818 × weight kg + 486.6 | kcal/day | |
Males (30–60 years) | 11.472 × weight kg + 873.1 | kcal/day | |
Females (30–60 years) | 8.126 × weight kg + 845.6 | kcal/day | |
Liu (1995) | Males | (13.88 × weight kg) + (4.16 × height cm) − (3.43 × age years) | kcal/day |
Females | (13.88 × weight kg) + (4.16 × height cm) − (3.43 × age years) − 112.4 | kcal/day | |
Yang (2010) | Males | 277 + 89 × weight kg + 600 | kj/day |
Females | 277 + 89 × weight kg | kj/day | |
Singapore (2016) | Males | 52.6 × weight kg + 2788 | kj/day |
Females | 52.6 × weight kg + 1960 | kj/day | |
Cunningham (1980) | All | 21.6 × FFM kg + 501.6 | kcal/day |
Wang (2000) | All | 24.6 × FFM kg + 175 | kcal/day |
Present 1 | All | (13.9 × weight kg) + (247 × gender) − (5.39 × age years) + 855 (female = 0, male = 1; R2 = 0.606) | kcal/day |
Present 2 | All | (26.535 × FFM kg) − (5.06 × age years) + 602.1(R2 = 0.607) | kcal/day |
Male (n = 127) | Female (n = 188) | Total (n = 315) | |
---|---|---|---|
Age (years) | 32.1 ± 11.8 | 37.5 ± 13.1 | 35.3 ± 12.8 |
Height (cm) | 173 ± 6 | 160 ± 5 | 165 ± 8 |
Weight (kg) | 71.7 ± 9.9 | 57.4 ± 8.1 | 63.1 ± 11.3 |
BMI (kg/m2) | 23.9 ± 2.7 | 22.4 ± 3.3 | 23.1 ± 3.2 |
Waist hip ratio | 0.86 ± 0.17 | 0.80 ± 0.10 | 0.82 ± 0.14 |
Fat-free mass (kg) | 56.0 ± 6.5 | 39.7 ± 3.9 | 46.2 ± 9.5 |
Percentage of body fat (%) | 21.5 ± 5.7 | 30.2 ± 6.5 | 26.7 ± 7.5 |
Underweight (%) | 0 | 4.60 | 4.60 |
Normal weight (%) | 17.9 | 32.9 | 50.8 |
Overweight (%) | 18.1 | 18.1 | 36.2 |
Obese (%) | 4.24 | 4.26 | 8.50 |
Southern region of China (%) | 4.76 | 12.1 | 16.8 |
Central region of China (%) | 12.7 | 15.9 | 28.6 |
Northern region of China (%) | 22.9 | 31.8 | 54.6 |
Variable | Male (kcal/day) | Female (kcal/day) | Total (kcal/day) | |||
---|---|---|---|---|---|---|
Mean ± SD | Pearson’s Correlation Coefficient | Mean ± SD | Pearson’s Correlation Coefficient | Mean ± SD | Pearson’s Correlation Coefficient | |
Measured RMR (n = 315) | 1934 ± 286 | 1460 ± 215 | 1651 ± 339 | |||
Predicted RMR from | ||||||
Harris–Benedict | 1665 ± 263 ** | 0.502 ** | 1689 ± 115 ** | 0.199 ** | 1678 ± 189 | 0.244 ** |
Schofield | 1906 ± 206 | 0.507 ** | 1424 ± 76 * | 0.397 ** | 1619 ± 277 ** | 0.758 ** |
Liu | 1584 ± 228 ** | 0.501 ** | 1216 ± 127 ** | 0.406 ** | 1364 ± 251 ** | 0.727 ** |
Yang | 1723 ± 249 ** | 0.528 ** | 1286 ± 173 ** | 0.365 ** | 1462 ± 298 ** | 0.725 ** |
Singapore | 1561 ± 147 ** | 0.528 ** | 1190 ± 102 ** | 0.365 ** | 1339 ± 220 ** | 0.756 ** |
Cunningham | 1712 ± 142 ** | 0.574 ** | 1358 ± 84.9 ** | 0.404 ** | 1500 ± 339 ** | 0.776 ** |
Wang | 1553 ± 162 ** | 0.574 ** | 1151 ± 96.8 ** | 0.404 ** | 1312 ± 235 ** | 0.776 ** |
Measured RMR (n = 80) | 2021 ± 287 | 1478 ± 177 | 1695 ± 351 | |||
Predicted RMR from | ||||||
Present 1 | 1971 ± 190 | 0.665 ** | 1429 ± 96.3 | 0.361 ** | 1646 ± 302 | 0.846 ** |
Present 2 | 2005 ± 228 | 0.608 ** | 1486 ± 118 | 0.316 ** | 1693 ± 307 | 0.819 ** |
Prediction Equations | Mean Difference ± SD (kcal/day) | Limits of Agreement (Mean Difference ± 1.96 SD) (kcal/day) | 95% Confidence Interval for Bias (kcal/day) | Accuracy a (%) | Over-Predicted b (%) | Under-Predicted c (%) | Bias (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Total | Total | Total | Total | |
Harris–Benedict | 269 ± 275 | −227 ± 223 | −269 and 807 | −664 and 210 | 221 to 317 | −259 to −195 | 37.1 | 37.8 | 25.1 | 5.47 |
Schofield | 28.2 ± 254 | 35.9 ± 199 | −470 and 527 | −352 and 424 | −16.4 to 72.9 | 7.40 to 64.4 | 59.1 | 18.7 | 22.2 | −0.34 |
Liu | 351 ± 262 | 244 ± 201 | −162 and 864 | −149 and 638 | 305 to 397 | 216 to 273 | 20.6 | 3.18 | 76.2 | −16.1 |
Yang | 211 ± 262 | 174 ± 222 | −303 and 726 | −261 and 608 | 165 to 258 | 142 to 206 | 37.1 | 8.25 | 54.6 | −10.3 |
Singapore | 374 ± 243 | 271 ± 202 | −103 and 851 | −125 and 666 | 331 to 416 | 242 to 300 | 17.5 | 2.22 | 80.3 | −17.5 |
Cunningham | 224 ± 236 | 102 ± 197 | −239 and 687 | −284 and 488 | 182 to 267 | 73.4 to 130 | 45.1 | 9.5 | 45.4 | −7.2 |
Wang | 383 ± 235 | 310 ± 197 | −78.6 and 844 | −77.1 and 696 | 341 to 424 | 281 to 338 | 18.1 | 1.30 | 80.6 | −19.4 |
Present 1 | 50.1 ± 215 | 48.9 ± 169 | −371 and 471 | −281 and 379 | −27.4 to 128 | −0.06 to 97.8 | 70.0 | 10.0 | 20.0 | −1.9 |
Present 2 | 16.0 ± 234 | −8.30 ± 179 | −443 and 475 | −360 and 343 | −68.4 to 110 | −60.3 to 43.8 | 62.5 | 21.2 | 16.3 | 1.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Li, S.; Zhang, Y.; Hong, P. Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults. Int. J. Environ. Res. Public Health 2019, 16, 2747. https://doi.org/10.3390/ijerph16152747
Xue J, Li S, Zhang Y, Hong P. Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults. International Journal of Environmental Research and Public Health. 2019; 16(15):2747. https://doi.org/10.3390/ijerph16152747
Chicago/Turabian StyleXue, Jingjing, Shuo Li, Yong Zhang, and Ping Hong. 2019. "Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults" International Journal of Environmental Research and Public Health 16, no. 15: 2747. https://doi.org/10.3390/ijerph16152747
APA StyleXue, J., Li, S., Zhang, Y., & Hong, P. (2019). Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults. International Journal of Environmental Research and Public Health, 16(15), 2747. https://doi.org/10.3390/ijerph16152747