Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling and Pretreatment
2.3. Soil Analysis
2.4. Parameter Estimation
2.4.1. Environmental Quality Evaluation Standard for Farmland of Greenhouse Vegetables Production (HJ333-2006)
2.4.2. Geo-accumulation Index
2.5. Data Analysis
3. Results and Discussion
3.1. HM Concentrations in Greenhouse Soils
3.2. Potential HM Contamination Risks in Greenhouse Soils
3.3. Chemical Fractions of HMs in Greenhouse Soils
3.4. Identification of the Main Sources Causing HM Accumulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.Z.; Li, H.; Wang, Z.; Zhou, L.D. Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils in Tongzhou District of Beijing. Procedia Environ. Sci. 2011, 10, 289–294. [Google Scholar] [CrossRef]
- Wu, X.; Ge, Y.; Wang, Y.; Liu, D.; Gu, B.; Ren, Y.; Yang, G.; Peng, C.; Cheng, J.; Chang, J. Agricultural carbon flux changes driven by intensive plastic greenhouse cultivation in five climatic regions of China. J. Clean. Prod. 2015, 95, 265–272. [Google Scholar] [CrossRef]
- Gil, C.; Boluda, R.; Ramos, J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of AlmerÃ-a (Spain). Chemosphere 2004, 55, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.Y.; Zeng, X.B.; Su, S.M.; Duan, R.; Wang, Y.N.; Gao, X. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 5359–5369. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.F.; Duan, Z.Q.; Heng-Fu, H. Investigation and Evaluation of Heavy Metal Contamination of Greenhouse Soils in Tai Lake Region. Soils 2007, 39, 910–914. [Google Scholar]
- Martín, J.A.R.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013, 200, 180–188. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, H.J.; Wang, L.L.; Liu, Z.H.; Wei, J.L.; Wang, Y.Q.; Jiang, L.H.; Liang, D.; Zhang, Y.F. Analysis of Heavy Metal Sources for Vegetable Soils from Shandong Province, China. J. Integr. Agric. 2011, 10, 109–119. [Google Scholar] [CrossRef]
- Liu, Q.; Du, Z.Y.; Shi, Y.X.; Pang, X.G. Spatial distribution charicteristics of soil heavy metals in vegetable growing area based on GIS in Shouguang city, Shandong province. Trans. CSAE 2009, 25, 258–263. (In Chinese) [Google Scholar]
- Wang, J.; Mi, W.; Song, P.; Xie, H.; Zhu, L.; Wang, J. Cultivation Ages Effect on Soil Physicochemical Properties and Heavy Metal Accumulation in Greenhouse Soils. Chin. Geogr. Sci. 2018, 28, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yang, L.; Yu, S.F.; Liu, Z.H.; Wei, J.L.; Wang, X.J.; Wang, Y.Q. Evaluation on Environmental Quality of Heavy Metal Contents in Soils of Vegetable Greenhouses in Shouguang City. Res. Environ. Sci. 2008, 21, 66–71. (In Chinese) [Google Scholar]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy. Environ. Sci. Pollut. Res. 2018, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Hu, W.; Xing, Z.; Huang, B.; Jia, M.; Wan, M. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China. Chemosphere 2016, 165, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, B.; Dong, L.; Hu, W.; Akhtar, M.S.; Qu, M. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicol. Environ. Saf. 2017, 137, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Andrew, B.; Cave, M.R.; Joanna, W.; Fordyce, F.M.; Bewley, R.J.F.; Graham, M.C.; Ngwenya, B.T.; Farmer, J.G. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Sci. Total Environ. 2010, 409, 267–277. [Google Scholar]
- Duong, T.T.T.; Lee, B.K. Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmos. Environ. 2009, 43, 3502–3509. [Google Scholar] [CrossRef]
- Gleyzes, C.; Tellier, S.; Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends Anal. Chem. 2002, 21, 451–467. [Google Scholar] [CrossRef]
- Pyeong-Koo, L.; Byoung-Young, C.; Min-Ju, K. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere 2015, 119, 1411–1421. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Narwal, R.P.; Singh, B.R. Effect of Organic Materials on Partitioning, Extractability and Plant Uptake of Metals in an Alum Shale Soil. Water Air Soil Pollut. 1998, 103, 405–421. [Google Scholar] [CrossRef]
- Salbu, B.; Krekling, T. Characterisation of radioactive particles in the environment†. Analyst 1998, 123, 843–850. [Google Scholar] [CrossRef]
- Jing, W.Q.; Nan, Z.R.; Liu, X.W.; Wang, S.L.; Li, Y.; Huang, H.; Zhao, C.C. Speciation and bioavailability assessment of cu, zn and ni in argricultural soils from Jinchang, Gansu, China. Environ. Chem. 2010, 29, 220–225. (In Chinese) [Google Scholar]
- Martín, J.A.R.; Arias, M.L.; Corbí, J.M.G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, J.; Chai, S.; Cai, J.; Xue, L.; Zhang, Q. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere 2015, 134, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Martínez, J.; Llamas, J.F.; Miguel, E.D.; Rey, J.; Hidalgo, M.C. Soil contamination from urban and industrial activity: Example of the mining district of Linares (southern Spain). Environ. Geol. 2008, 54, 669–677. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Zeng, X.B.; Bai, L.Y.; Li, L.F.; Su, S.M. The status and changes of organic matter, nitrogen, phosphorus and potassium under different soil using styles of Shouguang of Shangdong Province. Acta Ecol. Sin. 2009, 29, 3737–3746. (In Chinese) [Google Scholar]
- State Environmental Protection Administration, People’s Republic of China. The Technical Specification for Soil Environmental Monitoring (HJ/T 166–2004); China Environmental Science Press: Beijing, China, 2004. [Google Scholar]
- USEPA. Test Methods for Evaluating Soild Waste, Method 3050B: Acid Digestion of Sediments Sludges and Soils (Revision 2); U.S. Government Printing Office (GPO): Washington, DC, USA, 1996. [Google Scholar]
- State Environmental Protection Administration, People’s Republic of China. Environmental Quality Evaluation Standard for Farmland of Greenhouse Vegetables Production (HJ333-2006); China Environmental Science Press: Beijing, China, 2007. [Google Scholar]
- Müller, M.; Anke, M. Distribution of cadmium in the food chain (soil-plant-human) of a cadmium exposed area and the health risks of the general population. Sci. Total Environ. 1994, 156, 151–158. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Kong, X.; Cao, J.; Tang, R.; Zhang, S.; Dong, F. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China. Environ. Monit. Assess. 2014, 186, 7719–7731. [Google Scholar] [CrossRef] [PubMed]
- Topcuoglu, B. Effects of Repeated Applications of Sewage Sludge and MSW Compost on the Bioavailability of Heavy Metals in Greenhouse Soil. Pol. J. Environ. Stud. 2005, 14, 217–222. [Google Scholar]
- Sungur, A.; Soylak, M.; Özcan, H. Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey. Environ. Earth Sci. 2016, 75, 334. [Google Scholar] [CrossRef]
- Huang, S.W.; Jin, J.Y. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2008, 139, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Y.; Huang, B.; Niedermann, S. Health Risk Assessment of Heavy Metals in Soils and Vegetables from a Typical Greenhouse Vegetable Production System in China. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 1264–1280. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, N.M. The Distributing Character of Heavy Metals and Its Pollution Estimate in Greenhouse soils of Yunnan Province. J. Yunnan Agric. Univ. 2010, 25, 862–867. (In Chinese) [Google Scholar]
- Qin, L.L.; Zhang, B.Y.; Wang, W.X. Specificity and potential ecological risk of heavy metals pollution in greenhouse vegetable soils—A case study of Lanzhou city. Guangdong Agric. Sci. 2013, 40, 175–178. (In Chinese) [Google Scholar]
- Bai, L.Y.; Zeng, X.B.; Lian-Fang, L.I.; Chang, P.; Shu-Hui, L.I. Effects of Land Use on Heavy Metal Accumulation in Soils and Sources Analysis. J. Integr. Agric. 2010, 9, 1650–1658. [Google Scholar] [CrossRef]
- Song, Z.T.; Zhao, Y.J.; Zhou, Q.W.; Liu, X.W.; Zhang, T.L. Applications of Geostatistical Analyses and Stochastic Models to Identify Sources of Soil Heavy Metals in Wuqing District, Tianjin, China. Environ. Sci. 2016, 37, 2756–2762. (In Chinese) [Google Scholar]
- Chu, C.J.; Wang, Z.H.; Zhou, J.F.; Peng, S.L.; Yang, F.L. Contents and accumulation characteristics of heavy metals in open and protected vegetable soils. J. Northwest A F Univ. (Nat. Sci. Ed.) 2013, 41, 125–132. (In Chinese) [Google Scholar]
- Zhang, S.Q.; Guo, R.Y.; Cao, J.; Nan, Z.R.; Liu, W.T. Characteristic of Nutrient Accumulation and Heavy Metal Pollution Assessment in Greenhouse Soils in Baiyin City. J. Agro-Environ. Sci. 2010, 29, 711–716. (In Chinese) [Google Scholar]
- Kumari, J.; Paul, B. Geochemical and environmental risk assessment of hazardous elements in river sediment. Environ. Earth Sci. 2017, 76, 731. [Google Scholar] [CrossRef]
- Guo, P.; Xie, Z.L.; Jun, L.I.; Kang, C.L.; Liu, J.H. Relationships between fractionations of Pb, Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chin. Geogr. Sci. 2005, 15, 179–185. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, C.; Wang, J.; Zhang, X. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. Environ. Sci. Pollut. Res. 2018, 25, 17499–17508. [Google Scholar]
- Kosolsaksakul, P.; Farmer, J.G.; Oliver, I.W.; Graham, M.C. Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ. Pollut. 2014, 187, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memoli, V.; Eymar, E.; Garcíadelgado, C.; Esposito, F.; Panico, S.C.; De, A.M.; Barile, R.; Maisto, G. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas. Sci. Total Environ. 2018, 636, 1099–1108. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, F.; Chen, J.; Gan, H.; Guo, Y. Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environ. Monit. Assess. 2007, 134, 429. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.F.; Wang, Y.B.; Huang, Y.J. Chemical fractions and phytoavailability of copper to rape grown in the polluted paddy soil. Int. J. Environ. Sci. Technol. 2015, 12, 2929–2938. [Google Scholar] [CrossRef]
- Zou, X.; Yuan, T.; Zhu, Y.; Zhang, X.; Feng, S.; Shen, Z.; Wang, W. Heterogeneous distribution of copper in different grain size and density fractions of contaminated surface sediment from Nansi Lake (China). Environ. Geol. 2007, 51, 813–820. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J. Geochem. Explor. 2014, 144, 298–305. [Google Scholar] [CrossRef]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Pueyo, M.; Sastre, J.; Hernández, E.; Vidal, M.; Lópezsánchez, J.F.; Rauret, G. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 2003, 32, 2054. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonsoazcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Xiao, Q.; Lu, S. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environ. Sci. Pollut. Res. 2016, 23, 1–8. [Google Scholar]
- Li, H.; Ji, H. Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China. J. Geochem. Explor. 2017, 183, 22–23. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, J.; Zhang, E.; Hou, J.; Liu, X. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environ. Sci. Pollut. Res. 2016, 23, 8709–8720. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour. Technol. 2016, 209, 397–401. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, Z.; Zhang, G.; Wang, A.; Li, Z.; Liu, Y.; Hua, W.; Zeng, Q.; Liang, Y.; Zou, D. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J. Anal. Appl. Pyrolysis 2018, 132, 82–93. [Google Scholar] [CrossRef]
- Qiutong, X.; Mingkui, Z. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Ecotoxicol. Environ. Saf. 2017, 142, 410. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Nanos, N.; Grau, J.M.; Gil, L.; López-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Gjoka, F.; Felixhenningsen, P.; Wegener, H.R.; Salillari, I.; Beqiraj, A. Heavy metals in soils from Tirana (Albania). Environ. Monit. Assess. 2011, 172, 517. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, B.; Xue, N.; Li, F.; Seip, H.M.; Cong, X.; Yan, Y.; Liu, B.; Han, B.; Li, H. Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain, China. Environ. Sci. Pollut. Res. 2014, 21, 1360–1369. [Google Scholar] [CrossRef]
- Nanos, N.; Martín, J.A.R. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Qiang, L.; Liu, J.; Wang, Q.; Yang, W. Source identification and availability of heavy metals in peri-urban vegetable soils: A case study from China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1–14. [Google Scholar] [CrossRef]
- Mihailović, A.; Budinski-Petković, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralević, N.M.; Vasić, M.V. Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- Salah, E.A.; Turki, A.M.; Mahal, S.N. Chemometric Evaluation of the Heavy Metals in Urban Soil of Fallujah City, Iraq. J. Environ. Prot. 2015, 06, 1279–1292. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.B.; Ma, J.; Wang, X.L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carltonsmith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2006, 311, 205–219. [Google Scholar] [CrossRef]
- Dharma-Wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ. Geochem. Health 2018, 219, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Liu, X.; Zhang, Q.; Liu, X.H.; Qiao, Y.H.; Su, D.C.; Cheng, J.S.; Li, H.F. Evaluating the environmental risk and the bioavailability of Cd in phosphorus fertilizers. Environ. Sci. Technol. 2016, 39, 156–161. (In Chinese) [Google Scholar]
Soil pH | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|
mg·kg−1 | ||||||
Soil pH < 6.5 | 0.30 | 150 | 50 | 40 | 50 | 200 |
6.5 < Soil pH < 7.5 | 0.30 | 200 | 100 | 50 | 50 | 250 |
Soil pH > 7.5 | 0.40 | 250 | 100 | 60 | 50 | 300 |
Parameter | Range (mg·kg−1) | Mean (mg·kg−1) | Median (mg·kg−1) | SD | CV | Skewness | Kurtosis | Background Value a (mg·kg−1) |
---|---|---|---|---|---|---|---|---|
Cd | 0.09–0.48 | 0.21 | 0.17 | 0.11 | 52.0 | 1.12 | 0.39 | 0.08 |
Cr | 37.0–109.1 | 70.7 | 68.4 | 16.1 | 22.7 | 0.31 | −0.17 | 66.0 |
Cu | 20.8–76.9 | 42.1 | 39.8 | 14.9 | 35.5 | 0.73 | 0.11 | 23.6 |
Ni | 16.2–31.2 | 23.0 | 21.9 | 3.75 | 16.3 | 0.46 | −0.62 | 28.6 |
Pb | 14.5–25.7 | 18.9 | 18.2 | 2.89 | 15.3 | 0.67 | −0.12 | 26.0 |
Zn | 75.9–246.1 | 144.4 | 139.0 | 43.5 | 30.1 | 0.76 | 0.56 | 64.5 |
pH | 6.6–7.86 | 7.39 | 7.52 | 0.38 | 5.1 | −0.95 | −0.33 | - |
SOC (%) | 1.4–3.0 | 2.0 | 2.1 | 3.71 | 18.2 | 0.09 | −0.23 | - |
Study Area | Cd | Cr | Cu | Ni | Pb | Zn | Reference | |
---|---|---|---|---|---|---|---|---|
mg·kg−1 | ||||||||
Spain | Western Almería | 1.20 | - a | - a | 38.6 | 69.9 | - a | [3] |
Granada and Almería | 1.10 | 50.3 | 30.2 | 36.0 | 68.9 | 133 | [6] | |
Turkey | Antalya Aksu | - a | - a | 25.0 | 16.6 | 45.0 | 88.0 | [35] |
Çanakkale | 1.07 | 85.5 | 46.7 | 55.5 | 19.6 | 84.6 | [36] | |
China | North China Plain | 0.64 | 87.9 | 29.9 | - a | 29.4 | 82.4 | [37] |
Nanjing, Jangsu | 0.15 | - a | 52.2 | - a | 53 | 117 | [38] | |
Yunnan | 0.40 | 89.9 | 46.6 | 18.3 | 19.8 | 48.6 | [39] | |
Lanzhou, Gansu | 0.26 | 65.5 | -a | 12.3 | 23.9 | - a | [40] | |
Siping, Jilin | 0.47 | 67.5 | 37 | 25.2 | 18.0 | 87.7 | [41] | |
Wuwei, Gansu | 0.42 | 67.9 | 33.9 | 28.6 | 20.8 | 85.3 | [4] | |
Wuqing, Tianjin | 0.14 | 62.5 | 24.5 | 32.1 | 24.3 | 71.6 | [42] | |
Henan | - a | 54.4 | 32.0 | 37.7 | - a | 49.0 | [43] | |
Shouguang, Shandong | 0.21 | 70.7 | 42.1 | 23.0 | 18.9 | 144.4 | This study |
Element | Cd | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|
Single Quality Index | Mean | 0.615 | 0.315 | 0.421 | 0.419 | 0.378 | 0.526 |
SD | 0.335 | 0.087 | 0.149 | 0.095 | 0.058 | 0.184 | |
Range | 0.224–1.50 | 0.148–0.475 | 0.208–0.769 | 0.269–0.624 | 0.291–0.513 | 0.253–0.984 | |
Over-standardrate (%) | 16.13 | 0 | 0 | 0 | 0 | 0 | |
Comprehensive Quality Index | 0.537 |
Item | Cd | Cr | Cu | Ni | Pb | Zn | Fe2O3 | Al2O3 | K | P | SOC | Cultivation Age |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 1 | |||||||||||
Cr | −0.048 | 1 | ||||||||||
Cu | 0.336 | 0.139 | 1 | |||||||||
Ni | −0.022 | 0.686 ** | 0.134 | 1 | ||||||||
Pb | −0.097 | 0.759 ** | 0.075 | 0.918 ** | 1 | |||||||
Zn | 0.379 * | 0.013 | 0.788 ** | 0.221 | 0.094 | 1 | ||||||
Fe2O3 | −0.043 | 0.732 ** | 0.038 | 0.641 ** | 0.729 ** | −0.028 | 1 | |||||
Al2O3 | −0.118 | 0.783 ** | 0.030 | 0.697 ** | 0.790 ** | 0.028 | 0.923 ** | 1 | ||||
K | −0.005 | 0.673 ** | 0.323 | 0.330 | 0.468 ** | 0.223 | 0.544 ** | 0.575 ** | 1 | |||
P | 0.535 ** | −0.129 | 0.194 | −0.080 | −0.183 | 0.402 * | −0.136 | −0.141 | 0.065 | 1 | ||
SOC | 0.419 * | 0.224 | 0.440 * | 0.231 | 0.142 | 0.578 ** | 0.090 | 0.144 | 0.379 * | 0.566 ** | 1 | |
Cultivation age | 0.647 ** | −0.111 | −0.097 | −0.200 | −0.214 | −0.025 | 0.001 | −0.091 | −0.132 | 0.560 ** | 0.072 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Chen, Y.; Ma, J.; Islam, M.S.; Weng, L.; Li, Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. https://doi.org/10.3390/ijerph16152805
Liao Z, Chen Y, Ma J, Islam MS, Weng L, Li Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. International Journal of Environmental Research and Public Health. 2019; 16(15):2805. https://doi.org/10.3390/ijerph16152805
Chicago/Turabian StyleLiao, Zhongbin, Yali Chen, Jie Ma, Md. Shafiqul Islam, Liping Weng, and Yongtao Li. 2019. "Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment" International Journal of Environmental Research and Public Health 16, no. 15: 2805. https://doi.org/10.3390/ijerph16152805
APA StyleLiao, Z., Chen, Y., Ma, J., Islam, M. S., Weng, L., & Li, Y. (2019). Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. International Journal of Environmental Research and Public Health, 16(15), 2805. https://doi.org/10.3390/ijerph16152805