Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Evaluation Test
2.4. Body Composition Test
2.5. Heart Rate Variability Test
2.6. Swimming Tests
2.7. Maximal Horizontal Jump Test
2.8. Running Test
2.9. Training Protocol
2.10. Statistical Analysis
3. Results
4. Discussion
4.1. Body Composition
4.2. Heart Rate Variability
4.3. Swimming Test
4.4. Horizontal Jump Test
4.5. Running Test
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Arroyo-Toledo, J.J.; Clemente, V.J.; Gonzalez-Rave, J.M.; Ramos Campo, D.J.; Sortwell, A. Comparison between traditional and reverse periodization: Swimming performance and specific strength values. Int. J. Swim. Kinet. 2013, 2, 87–96. [Google Scholar]
- Arroyo-Toledo, J.; Clemente, V.; González-Rave, J. The effects of ten weeks block and reverse periodization training on swimming performance and body composition of moderately trained female swimmers. J. Swim. Res. 2013, 21, 1–13. [Google Scholar]
- Clemente Suarez, V.J.; González-Ravé, J.M. Four weeks of training with different aerobic workload distributions—Effect on aerobic performance. Eur. J. Sport Sci. 2014, 14, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J. The Application of Cortical Arousal Assessment to Control Neuromuscular Fatigue During Strength Training. J. Mot. Behav. 2017, 49, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Arroyo-Toledo, J. Use of biotechnology devices to analyse fatigue process in swimming training. J. Med. Syst. 2017, 41, 94. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Arroyo-Toledo, J.J. The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training Program. J. Med. Syst. 2018, 42, 47. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.; González-Ravé, J.; Navarro-Valdivielso, F. Short-term periodized aerobic training does not attenuate strength capacity or jump performance in recreational endurance athletes. Acta Physiol. Hung. 2014, 101, 185–196. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Dalamitros, A.A.; Nikolaidis, P.T. The effect of a short-term training period on physiological parameters and running performance: Intensity distribution versus constant-intensity exercise. J. Sports Med. Phys. Fit. 2018, 58, 1–7. [Google Scholar]
- Prestes, J.; De Lima, C.; Frollini, A.B.; Donatto, F.F.; Conte, M. Comparison of linear and reverse linear periodization effects on maximal strength and body composition. J. Strength Cond. Res. 2009, 23, 266–274. [Google Scholar] [CrossRef]
- Rhea, M.R.; Phillips, W.T.; Burkett, L.N.; Stone, W.J.; Ball, S.D.; Alvar, B.A.; Thomas, A.B. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J. Strength Cond. Res. 2003, 17, 82–87. [Google Scholar]
- Uusitalo, A.L.; Uusitalo, A.J.; Rusko, H.K. Endurance training, overtraining and baroreflex sensitivity in female athletes. Clin. Physiol. 1998, 18, 510–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bompa, T.O. Entrenamiento De La Potencia Aplicado a Los Deportes: La Pliometría Para El Desarrollo De La Máxima Potencia; Inde: Barcelona, Spain, 2004. [Google Scholar]
- Matveev, L.P.; Zdornyj, A.P. Fundamentals of Sports Training; Progress: Moscow, Russia, 1981. [Google Scholar]
- Arroyo-Toledo, J.J.; Clemente Suárez, V.J.; González Ravé, J.M. Effects of Traditional and Reverse Periodization on Strength, Body-Composition and Swim Performance. Imp. J. Interdiscip. Res. 2016, 2, 474–481. [Google Scholar]
- Clemente-Suárez, V.J.; Dalamitros, A.; Ribeiro, J.; Sousa, A.; Fernandes, R.J.; Vilas-Boas, J.P. The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur. J. Sport Sci. 2017, 17, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J. Periodized training archive better autonomic modulation and aerobic performance than non periodized training. J. Sports Med. Phys. Fit. 2017, 58, 1559–1564. [Google Scholar]
- Ebben, W.P.; Kindler, A.G.; Chirdon, K.A.; Jenkins, N.C.; Polichnowski, A.J.; Ng, A.V. The effect of high-load vs. high-repetition training on endurance performance. J. Strength Cond. Res. 2004, 18, 513–517. [Google Scholar] [PubMed]
- Gibala, M.J.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. (Lond.) 2006, 575, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Terada, S.; Yokozeki, T.; Kawanaka, K.; Ogawa, K.; Higuchi, M.; Ezaki, O.; Tabata, I. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J. Appl. Physiol. 2001, 90, 2019–2024. [Google Scholar] [CrossRef]
- Terada, S.; Tabata, I.; Higuchi, M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn. J. Physiol. 2004, 54, 47–52. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Fernandes, R.J.; Arroyo-Toledo, J.; Figueiredo, P.; González-Ravé, J.M.; Vilas-Boas, J. Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiol. Hung. 2015, 102, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Suárez, V.J.; Delgado-Moreno, R.; González, B.; Ortega, J.; Ramos-Campo, D.J. Amateur endurance triathletes’ performance is improved independently of volume or intensity based training. Physiol. Behav. 2018, 205, 2–8. [Google Scholar] [CrossRef]
- Arroyo-Toledo, J.J.; Cantos-Polo, I.; Liedtke, J.; Palomo-Vélez, C. Concentrated Load On A Reverse Periodization, Propel Higher Positives Effects On Track Test Performance, Than Traditional Sequence. Imp. J. Interdiscip. Res. 2017, 3, 470–476. [Google Scholar]
- Arroyo-Toledo, J.J.; de la Rosa, F.J.B. Traditional Periodization Improves Body Composition Values To Young Low-Experienced Swimmers. Imp. J. Interdiscip. Res. 2017, 3, 507–512. [Google Scholar]
- Clemente-Suárez, V.J.; Fernandes, R.J.; de Jesus, K.; Pelarigo, J.; Arroyo-Toledo, J.J.; Vilas-Boas, J.P. Do traditional and reverse swimming training periodizations lead to similar aerobic performance improvements? J. Sports Med. Phys. Fit. 2018, 58, 761–767. [Google Scholar]
- Clemente Suarez, V.J.; Ramos Campo, D.; Gonzalez-Rave, J.M. Modifications to body composition after running an alpine marathon. Int. SportMed J. 2011, 12, 133–140. [Google Scholar]
- Clemente-Suarez, V.J.; Nikolaidis, P.T. Use of bioimpedianciometer as predictor of mountain marathon performance. J. Med. Syst. 2017, 41, 73. [Google Scholar] [CrossRef]
- Ginn, E.; Australian Sports Commission. Critical Speed and Training Intensities for Swimming; National Sports Research Centre: Bruce, Australia, 1993. [Google Scholar]
- Adam, C.; Klissouras, V.; Ravazzolo, M.; Renson, R.; Tuxworth, W. EUROFIT: European Test of Physical Fitness; Council of Europe, Committee for the Development of Sport: Rome, Italy, 1988; pp. 10–70. [Google Scholar]
- Coutts, A.J.; Wallace, L.K.; Slattery, K.M. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. Int. J. Sports Med. 2007, 28, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, M.; Bela, E.; Lupo, C.; Martelli, G.; Zhu, B.; Carli, G. Influence of training on the response to exercise of adrenocorticotropin and growth hormone plasma concentrations in human swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 394–397. [Google Scholar] [CrossRef]
- Costill, D.; Thomas, R.; Robergs, R.; Pascoe, D.; Lambert, C.; Barr, S.; Fink, W. Adaptations to swimming training: Influence of training volume. Med. Sci. Sports Exerc. 1991, 23, 371–377. [Google Scholar] [CrossRef]
- Sperlich, B.; Zinner, C.; Heilemann, I.; Kjendlie, P.; Holmberg, H.; Mester, J. High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers. Eur. J. Appl. Physiol. 2010, 110, 1029–1036. [Google Scholar] [CrossRef]
- Manzi, V.; Castagna, C.; Padua, E.; Lombardo, M.; D’Ottavio, S.; Massaro, M.; Volterrani, M.; Iellamo, F. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. Am. J. Physiol. -Heart Circ. Physiol. 2009, 296, H1733–H1740. [Google Scholar] [CrossRef] [Green Version]
- Furlan, R.; Piazza, S.; Dell’Orto, S.; Gentile, E.; Cerutti, S.; Pagani, M.; Malliani, A. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc. Res. 1993, 27, 482–488. [Google Scholar] [CrossRef]
- Hynynen, E.; Vesterinen, V.; Rusko, H.; Nummela, A. Effects of moderate and heavy endurance exercise on nocturnal HRV. Int. J. Sports Med. 2010, 31, 428–432. [Google Scholar] [CrossRef]
- Sant’Ana, J.E.; Pereira, M.G.; da Silva, V.J.; Dambrós, C.; Costa-Neto, C.M.; Souza, H.C. Effect of the duration of daily aerobic physical training on cardiac autonomic adaptations. Auton. Neurosci. 2011, 159, 32–37. [Google Scholar] [CrossRef]
- Mujika, I.; Busson, T.; Geyssant, A.; Chatard, J. Training content and its effects on performance in 100 and 200 m swimmers. In Biomechanics and Medicine in Swimming VII; E & FN Spon: London, UK, 1996; pp. 201–207. [Google Scholar]
- Sylta, Ø.; Tønnessen, E.; Hammarström, D.; Danielsen, J.; Skovereng, K.; Ravn, T.; Rønnestad, B.; Sandbakk, Ø.; Seiler, S. The effect of different high-intensity periodization models on endurance adaptations. Med. Sci. Sports Exerc. 2016, 48, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Galy, O.; Manetta, J.; Coste, O.; Maimoun, L.; Chamari, K.; Hue, O. Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scand. J. Med. Sci. Sports 2003, 13, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Campo, D.J.; Rubio-Arias, J.A.; Dufour, S.; Chung, L.; Ávila-Gandía, V.; Alcaraz, P.E. Biochemical responses and physical performance during high-intensity resistance circuit training in hypoxia and normoxia. Eur. J. Appl. Physiol. 2017, 117, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.; De Paz, J.A.; Garatachea, N.; Cabeza de Vaca, S.; Chavarren, J. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J. Appl. Physiol. 2003, 94, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Nummela, A.; Keränen, T.; Mikkelsson, L. Factors related to top running speed and economy. Int. J. Sports Med. 2007, 28, 655–661. [Google Scholar] [CrossRef]
- Williams, K.R. Biomechanical factors contributing to marathon race success. Sports Med. 2007, 37, 420–423. [Google Scholar] [CrossRef]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Kyrolainen, H.; Belli, A.; Komi, P.V. Biomechanical factors affecting running economy. Med. Sci. Sports Exerc. 2001, 33, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
Group | n (Male/Female) | Age (years) | Height (cm) | Weight (Kg) | Number of Session/Week | Minutes Per Session | Hours of Training Per Week |
---|---|---|---|---|---|---|---|
RP | 11() | 25.6 ± 6.8 | 170.5 ± 6.2 | 65.4 ± 8.5 | 5.5 ± 0.2 | 45.9 ± 24.8 | 6.9 ± 2.2 |
TP | 13 () | 28.2 ± 9.6 | 170.5 ± 7.6 | 66.6 ± 8.7 | 5.6 ± 0.3 | 46.3 ± 25.3 | 7.0 ± 2.1 |
CG | 8 (4/4) | 25.9 ± 3.4 | 166.1 ± 3.9 | 62.4 ± 5.3 | 5.8 ± 0.2 | 48.2 ± 28.2 | 7.1 ± 2.0 |
RP (n = 11) | TD (n = 13) | CG (n = 8) | Intergroup Comparations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Basal | 8 Weeks | 10 Weeks | Basal | 8 Weeks | 10 Weeks | Basal | 8 Weeks | 10 Weeks | F | P | |
Weight (Kg) | 63.9 ± 7.1 | 63.8 ± 6.4 | 63.5 ± 6.5 | 67.7 ± 9.5 | 67.8 ± 10.3 | 67.7 ± 10.0 | 65.5 ± 8.1 | 64.6 ± 6.7 | 64.6 ± 6.7 | 0.757 | 0.558 |
Fat mass (%) | 15.8 ± 5.0 | 15.1 ± 4.8 | 15.1 ± 5.3 | 15.6 ± 5.4 | 15.7 ± 5.5 | 15.9 ± 5.0 | 17.0 ± 5.5 | 16.5 ± 6.8 | 16.5 ± 6.8 | 0.289 | 0.884 |
Muscle mass (Kg) | 51.0 ± 6.3 | 51.6 ± 6.1 | 51.4 ± 6.6 | 54.5 ± 9.6 | 54.4 ± 9.9 | 54.2 ± 9.6 | 50.7 ± 8.0 | 51.4 ± 8.4 | 51.4 ± 8.4 | 0.677 | 0.611 |
Bone mass (Kg) | 2.7 ± 0.3 | 2.8 ± 0.3 | 2.7 ± 0.3 | 2.9 ± 0.5 | 2.9 ± 0.5 | 2.9 ± 0.5 | 2.7 ± 0.4 | 2.7 ± 0.4 | 2.7 ± 0.4 | 0.573 | 0.683 |
Water (%) | 61.1 ± 3.2 | 62.4 ± 3.1 | 62.4 ± 3.5 | 61.3 ± 4.0 | 61.7 ± 3.4 | 61.5 ± 3.0 | 60.3 ± 2.7 | 60.8 ± 3.9 | 60.8 ± 3.9 | 0.438 | 0.781 |
RP (n = 11) | TP (n = 13) | CG (n = 8) | Intergroup Comparations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | F | P | |
LF (ms2) | 1294.9 ± 897.2 | 1837.0 ± 2869.7 | 2453.3 ± 3128.8 | 1372.0 ± 1109.5 | 557.6 ± 293.4 | 10,696.0 ± 15,625.1 | B > 810 > 8 | 1185.6 ± 1517.8 | 1865.1 ± 2583.6 | 1532.1 ± 2665.4 | 2.740 | 0.055 | ||
HF (ms2) | 553.7 ± 624.1 | 284.3 ± 108.2 | 2725.5 ± 4147.9 | 427.6 ± 531.4 | 223.8 ± 149.2 | 7566.8 ± 13442.1 | 316.4 ± 242.0 | 1182.8 ± 2705.5 | 1211.8 ± 2693.4 | 1.394 | 0.271 | |||
LF/HF | 5.4 ± 6.6 | 6.1 ± 8.5 | 1.6 ± 1.5 | 8 > 10 | 7.2 ± 10.6 | 4.0 ± 3.4 | 2.1 ± 7.7 | 4.3 ± 4.9 | 5.0 ± 5.3 | 2.2 ± 1.3 | 0.563 | 0.623 | ||
PNN50 % | 13.0 ± 15.2 | 7.7 ± 3.6 | 23.4 ± 18.9 | 10 > 8 | 11.2 ± 14.1 | 6.3 ± 3.7 | 18.1 ± 17.9 | 6.9 ± 3.6 | 5.8 ± 3.0 | 7.2 ± 2.3 | 1.268 | 0.398 | ||
RMSSD (ms) | 32.1 ± 16.3 | 41.0 ± 38.6 | 72.1 ± 66.3 | 44.5 ± 42.9 | 23.7 ± 8.2 | 110.9 ± 109.3 | 41.2 ± 42.4 | 44.8 ± 45.8 | 42.9 ± 46.1 | 2.780 | 0.058 | |||
Mean HR (bpm) | 69.7 ± 21.8 | 65.6 ± 9.1 | 62.3 ± 7.2 | 69.0 ± 23.2 | 60.2 ± 7.9 | 60.2 ± 8.7 | 65.6 ± 9.1 | 67.0 ± 7.1 | 65.5 ± 6.8 | 1.682 | 0.1236 | |||
TPo (ms2) | 9935.4 ± 12531.9 | 21,883.0 ± 23050.9 | 9024.9 ± 8948.2 | 4889.6 ± 2889.7 | 7044.3 ± 9558.1 | 10,5435.0 ± 14,8253.0 | 10 > 8 > B | 5890.0 ± 5390.9 | 20,438.6 ± 38,887.5 | 6234.9 ± 5950.6 | 1.668 | 0.237 |
RP (n = 11) | TP (n = 13) | CG (n = 8) | Intergroup Comparations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | F | P | |
RPE | 15.9 ± 2.2 | 16.6 ± 1.2 ǂ (0.05) | 16.3 ± 1.3 ǂ (0.05) | 16.2 ± 2.1 | 16.0 ± 2.3 ˠ (0.019) | 15.7 ± 1.4 ˠ (0.007) | 15.0 ± 2.2 | 14.3 ± 1.0 | 14.9 ± 1.0 | 3.215 | 0.034 | |||
Heart rate (bpm) | 177.0 ± 1.4 | 176.0 ± 1.5 | 178.0 ± 1.2 | 176.7 ± 1.3 | 175.0 ± 1.4 | 178.0 ± 1.0 | 173.0 ± 2.5 | 175.0 ± 1.4 | 174.0 ± 1.1 | 1.268 | 0.298 | |||
Speed 50 (m/s) | 1.4 ± 0.3 | 1.4 ± 0.2 | 1.4 ± 0.3 | 10 > B | 1.3 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.2 | 8 > B 10 > B | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.985 | 0.350 | |
Stroke Index | 44.0 ± 11.0 | 48.9 ± 10.1 ǂ (0.045) | 48.6 ± 10.5 ǂ (0.035) | 8 > B 10 > B | 45.9 ± 14.4 | 49.1 ± 10.6 | 50.1 ± 11.6 | 10 > B | 37.6 ± 6.3 | 37.8 ± 6.3 | 37.7 ± 6.2 | 3.628 | 0.041 | |
RPE | 17.5 ± 1.3 | 17.1 ± 1.5 | 17.5 ± 1.5 | 16.4 ± 3.0 | 16.1 ± 2.5 | 16.8 ± 2.2 | 14.9 ± 1.9 | 15.4 ± 1.8 | 15.1 ± 1.2 | 1.824 | 0.214 | |||
Critical Speed (m/s) | 0.9 ± 0.2 | 1.0 ± 0.2 ǂ (0.025) | 1.0 ± 0.2 ǂ (0.032) | 8 > B 10 > B | 0.9 ± 0.2 | 1.0 ± 0.2 ˠ (0.039) | 1.0 ± 0.2 ˠ (0.039) | 8 > B 10 > B | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 3.864 | 0.033 | |
Heart rate (bpm) | 177.3 ± 1.7 ǂ (0.01) | 175.5 ± 1.3 ǂ (0.012) | 178.2 ± 1.6 ǂ (0.01) | 8 < 10 | 176.2 ± 3.3 ˠ (0.025) | 176.9 ± 2.1 ˠ (0.017) | 173.8 ± 1.7 ˠ (0.045) | 10 < 8 | 166.3 ± 9.3 | 166.3 ± 3.5 | 166.3 ± 3.5 | 2.455 | 0.105 |
RP (n = 11) | TP (n = 13) | CG (n = 8) | Intergroup Comparations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | Basal | 8 Weeks | 10 Weeks | Intrag Comp | F | P | |
Peak Jump length (m) | 171.0 ± 20.0 | 172.4 ± 19.0 | 172.2 ± 13.6 | 8 > B 10 > B | 170.9 ± 21.5 | 172.2 ± 25.9 | 172.1 ± 26.1 | 8 > B 10 > B | 169.5 ± 26.6 | 169.2 ± 27.3 | 169.5 ± 25.5 | 4.317 | 0.116 | |
Stride Index | 3.5 ± 0.3 | 3.9 ± 0.3 | 3.7 ± 0.4 | 8 > B | 3.6 ± 0.5 | 3.8 ± 0.5 | 3.7 ± 0.6 | 8 > B | 3.5 ± 0.5 | 3.5 ± 0.5 | 3.4 ± 0.5 | 4.258 | 0.539 | |
Speed (m/s) | 4.1 ± 0.5 | 4.2 ± 0.5 | 4.2 ± 0.5 | 8 > B 10 > B | 4.2 ± 0.5 | 4.4 ± 0.5 ˠ (0.001) | 4.3 ± 0.5 ˠ (0.003) | 8 > B 10 > B | 3.7 ± 0.6 | 3.7 ± 0.4 | 3.7 ± 0.5 | 4.279 | 0.020 | |
RPE | 17.7 ± 1.3 | 17.6 ± 0.8 ǂ (0.01) | 18.6 ± 0.8 ǂ (0.001) | 10 > 8 | 17.5 ± 1.1 | 17.6 ± 0.9 ˠ (0.01) | 18.1 ± 1.1 ˠ (0.001) | 16.6 ± 2.1 | 15.4 ± 1.6 | 15.6 ± 1.5 | B > 8 | 1.924 | 2.149 | |
Final HR (bpm) | 192.5 ± 9.4 | 186.3 ± 11.0 | 188.6 ± 10.0 | B > 8 | 186.5 ± 5.5 | 185.3 ± 6.5 | 186.4 ± 5.9 | 188.0 ± 20.4 | 191.4 ± 9.7 | 191.9 ± 10.5 | 6.450 | 0.011 | ||
[La-] (mmol/l) | 7.4 ± 2.3 | 10.3 ± 2.0 ǂ (0.016) | 7.0 ± 1.6 | 10 > B 10 > 8 | 8.8 ± 2.2 | 9.5 ± 2.2 | 7.1 ± 2.4 | 8 > 10 | 7.0 ± 1.5 | 7.4 ± 2.1 | 7.7 ± 1.6 | 3.924 | 0.042 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente-Suárez, V.J.; Ramos-Campo, D.J. Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon. Int. J. Environ. Res. Public Health 2019, 16, 2807. https://doi.org/10.3390/ijerph16152807
Clemente-Suárez VJ, Ramos-Campo DJ. Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon. International Journal of Environmental Research and Public Health. 2019; 16(15):2807. https://doi.org/10.3390/ijerph16152807
Chicago/Turabian StyleClemente-Suárez, Vicente Javier, and Domingo Jesús Ramos-Campo. 2019. "Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon" International Journal of Environmental Research and Public Health 16, no. 15: 2807. https://doi.org/10.3390/ijerph16152807
APA StyleClemente-Suárez, V. J., & Ramos-Campo, D. J. (2019). Effectiveness of Reverse vs. Traditional Linear Training Periodization in Triathlon. International Journal of Environmental Research and Public Health, 16(15), 2807. https://doi.org/10.3390/ijerph16152807