A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society
Abstract
:1. Introduction
1.1. Brain-Body Medicine: Basic Concepts
1.2. Brain-Body Medicine: on the Important Role of the Bidirectional Heart-Brain Integrative Mechanisms
- the activity of PNS resulting in the relaxed subject with reduced HR and high HRV
- the overplay of SNS in anxious or stress situations triggering high HR and low HRV.
- The cardiac activity correlates with the cerebral activity that regulate the psycho-physical allostasis of the subject, hence also basic aspects of his Inner World such as Eudemonia;
- High, vagally mediated, HRV at rest has been shown to be a reliable index of a higher resilience as evaluated by means of psychometric scales;
- HR and HRV are easily determinable indices.
- Vagal afferences: More than 80% of the vagal nerve fibers are afferent fibers;
- Endocrine signals from the heart (mainly natriuretic peptides) and from peripheral organs (mainly adrenal gland) and from the microbiota (see below brain/gut interactions);
- Pulsatory waves in the brain parenchyma caused by cerebral artery pulses (see below “The Tide Hypothesis”);
- The release of micro-vesicles induced by heart beats.
2. Moving from the Brain-Body Medicine to the Brain-Body-Ecosystem Medicine
3. The Hippocratic View of Medicine: The “Brain-Body-Ecosystem Medicine”
- Air pollution by micro particles and toxic compounds affecting cognitive capabilities [83,84,85]. A population-based cohort study in Ontario, Canada, where the concentrations of pollutants are among the lowest in the world, has indicated that about 6.1% of dementia cases are due to PM2.5 and NO2 [86]. Furthermore, air pollution increases depressive symptoms [87]. Air pollution and noise synergistically work in reducing cognitive capabilities [88,89], in altering the blood-brain barrier and the adaptive stress responses [85];
- “Solastalgia” (Solastalgia is a neologism, invented by the Australian environmental philosopher Glenn Albrecht, to give greater meaning and clarity to environmentally induced distress. Open cut coal mining and the construction of new power stations had transformed this formerly pastoral landscape. Influenced by various environmental thinkers who linked man-made environmental stress leading to “land-sickness” (which, unlike other environmental stresses, did not lead to an environmental recovery) with psychic stress among the population of the particular environment, he developed the concept of solastalgia [92] Their sense of place, their identity, physical and mental health and general wellbeing were all challenged by unwelcome change. Moreover, they felt powerless to influence the outcome of the change process). [93]: A syndrome due to a drastic alteration of the environment where the subject has spent most of his life [94,95,96];
The Hippocratic Approach to Medicine in the Framework of Popper’s Worlds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANS | Autonomic Nervous System |
CAN | Central Autonomic Network |
CNS | Central Nervous System |
FB− | Negative Feedback |
HR | Heart Rate |
HRV | Heart Rate Variability |
IFS | Interstitial Fluid Space Fluid |
NTS | Nucleus of the solitary tract |
NVI | Neurovisceral integration |
PNS | Parasympathetic Nervous System |
SNS | Sympathetic Nervous System |
VNS | Vagus Nerve Stimulation |
References
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [PubMed]
- Bateson, G. Steps to an Ecology of Mind; Chandler Publishing Group: San Francisco, CA, USA, 1972. [Google Scholar]
- Ford, A.E.; Graham, H.; White, P.C. Integrating human and ecosystem health through ecosystem services frameworks. EcoHealth 2015, 12, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C. Planetary Health: From the Wellspring of Holistic Medicine to Personal and Public Health Imperative. Explore 2019, 15, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Soroka, J.T.; Collins, L.A.; Creech, G.; Kutcher, G.R.; Menne, K.R.; Petzel, B.L. Spiritual Care at the End of Life: Does Educational Intervention Focused on a Broad Definition of Spirituality Increase Utilization of Chaplain Spiritual Support in Hospice? J. Palliat. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, S.M. Defining Microbiome Health through a Host Lens. MSystems 2019, 4, e00155-19. [Google Scholar] [CrossRef] [Green Version]
- Amedei, A.; Barceló-Coblijn, G. Editorial of Special Issue “The Interplay of Microbiome and Immune Response in Health and Diseases”. Int. J. Mol. Sci. 2019, 20, 3708. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Lane, R.D.; Wager, T.D. The new field of Brain–Body Medicine: What have we learned and where are we headed? NeuroImage 2009, 47, 1135–1140. [Google Scholar] [CrossRef]
- Bateson, G. Form, Substance and Difference. Essential Readings in Biosemiotics 501; Chandler Publ. Group: San Francisco, CA, USA, 1970. [Google Scholar]
- Bernard, C. Lectures on the Phenomena of Life Common to Animals and Plants; Charles C Thomas Pub Ltd.: Springfield, IL, USA, 1974. [Google Scholar]
- Gross, C.G. Claude Bernard and the constancy of the internal environment. Neuroscientist 1998, 4, 380–385. [Google Scholar] [CrossRef]
- Cannon, W.B. The Wisdom of the Body; Norton & Co.: Oxford, UK, 1939. [Google Scholar]
- Lowe, R.; Dodig-Crnkovic, G.; Almer, A. Predictive regulation in affective and adaptive behaviour: An allostatic-cybernetics perspective. In Advanced Research on Biologically Inspired Cognitive Architectures; IGI Global: Hershey, PA, USA, 2017; pp. 149–176. [Google Scholar]
- Wiener, N. Cybernetics: Or the Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- McEwen, B.S. Sex, stress and the hippocampus: Allostasis, allostatic load and the aging process. Neurobiol. Aging 2002, 23, 921–939. [Google Scholar] [CrossRef]
- Schulkin, J. Allostasis, Homeostasis, and the Costs of Physiological Adaptation; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Schulkin, J. Social allostasis: Anticipatory regulation of the internal milieu. Front. Evol. Neurosci. 2011, 2, 111. [Google Scholar] [CrossRef]
- Schulkin, J. Adaptation and Well-Being: Social Allostasis; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Guidolin, D.; Fuxe, K.; Neri, G.; Nussdorfer, G.G.; Agnati, L.F. On the role of receptor–receptor interactions and volume transmission in learning and memory. Brain Res. Rev. 2007, 55, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Ruelle, D. Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys. 1981, 82, 137–151. [Google Scholar] [CrossRef]
- Boeing, G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems 2016, 4, 37. [Google Scholar] [CrossRef]
- Shelhamer, M. Nonlinear Dynamics in Physiology: A State-Space Approach; World Scientific: Singapore, 2007. [Google Scholar]
- Agnati, L.F.; Marcoli, M.; Leo, G.; Maura, G.; Guidolin, D. Homeostasis and the concept of ‘interstitial fluids hierarchy’: Relevance of cerebrospinal fluid sodium concentrations and brain temperature control. Int. J. Mol. Med. 2017, 39, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Barlow, P.; Ghidoni, R.; Borroto-Escuela, D.O.; Guidolin, D.; Fuxe, K. Possible genetic and epigenetic links between human inner speech, schizophrenia and altruism. Brain Res. 2012, 1476, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Baars, B.J.; Ramsøy, T.Z.; Laureys, S. Brain, conscious experience and the observing self. Trends Neurosci. 2003, 26, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Guidolin, D.; Marcoli, M.; Tortorella, C.; Maura, G.; Agnati, L. From the hierarchical organization of the central nervous system to the hierarchical aspects of biocodes. Biosystems 2019, 22, 103975. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, F. Du Bonheur: Un Voyage Philosophique; Fayard: Nacy, France, 2013. [Google Scholar]
- Reale, G. Il Pensiero Antico; Vita e Pensiero: Milan, Italy, 2001. [Google Scholar]
- Lucas, G. Gut thinking: The gut microbiome and mental health beyond the head. Microb. Ecol. Health Dis. 2018, 29, 1548250. [Google Scholar] [CrossRef]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Quigley, E.M. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Van Ameringen, M.; Turna, J.; Patterson, B.; Pipe, A.; Mao, R.Q.; Anglin, R.; Surette, M.G. The gut microbiome in psychiatry: A primer for clinicians. Depress. Anxiety 2019. [Google Scholar] [CrossRef] [PubMed]
- Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—A critical review. Mol. Neurobiol. 2019, 56, 1841–1851. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Marcoli, M.; Agnati, U.; Ferraro, L.; Guidolin, D.; Maura, G. The mis-exaptation of the prediction capability of humans and emergence of intolerant religious beliefs. Neurol. Psychiatry Brain Res. 2017, 23, 43–53. [Google Scholar] [CrossRef]
- Sterling, P. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- Agnati, L.F.; Barlow, P.W.; Baluška, F.; Tonin, P.; Guescini, M.; Leo, G.; Fuxe, K. A new theoretical approach to the functional meaning of sleep and dreaming in humans based on the maintenance of ‘predictive psychic homeostasis’. Commun. Integr. Biol. 2011, 4, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 2018, 55, e13082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [Google Scholar] [CrossRef]
- Eljamel, S. Vagus nerve stimulation for major depressive episodes. In Stimulation of the Peripheral Nervous System; Karger Publishers: Basel, Switzerland, 2016; Volume 29, pp. 53–63. [Google Scholar]
- Ernst, G. Heart-Rate variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef]
- Lane, R.D.; Wager, T.D. Introduction to a special issue of NeuroImage on Brain–Body Medicine. NeuroImage 2009, 47, 781–784. [Google Scholar] [CrossRef]
- Carreno, F.R.; Frazer, A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 2017, 14, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Colzato, L.S.; Jongkees, B.J.; de Wit, M.; van der Molen, M.J.; Steenbergen, L. Variable heart rate and a flexible mind: Higher resting-state heart rate variability predicts better task-switching. Cogn. Affect. Behav. Neurosci. 2018, 18, 730–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Carnevali, L.; Koenig, J.; Sgoifo, A.; Ottaviani, C. Autonomic and brain morphological predictors of stress resilience. Front. Neurosci. 2018, 12, 228. [Google Scholar] [CrossRef]
- Kong, J.; Fang, J.; Park, J.; Li, S.; Rong, P. Treating depression with transcutaneous auricular vagus nerve stimulation: State of the art and future perspectives. Front. Psychiatry 2018, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Agnati, L.F.; Cortelli, P.; Biagini, G.; Bjelke, B.; Fuxe, K. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport 1994, 6, 9–12. [Google Scholar] [CrossRef]
- Agnati, L.F.; Genedani, S.; Lenzi, P.L.; Leo, G.; Mora, F.; Ferré, S.; Fuxe, K. Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: Introduction of the tide hypothesis. J. Neural Transm. 2005, 112, 45–63. [Google Scholar] [CrossRef]
- Ostrow, L.W.; Sachs, F. Mechanosensation and endothelin in astrocytes—Hypothetical roles in CNS pathophysiology. Brain Res. Rev. 2005, 48, 488–508. [Google Scholar] [CrossRef]
- Paoletti, P.; Ascher, P. Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 1994, 13, 645–655. [Google Scholar] [CrossRef]
- Rasmussen, T. How do mechanosensitive channels sense membrane tension? Biochem. Soc. Trans. 2016, 44, 1019–1025. [Google Scholar] [CrossRef]
- Anderson, M.L. Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese 2007, 159, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Leo, G.; Guescini, M.; Genedani, S.; Stocchi, V.; Carone, C.; Filaferro, M.; Sisti, D.; Marcoli, M.; Maura, G.; Cortelli, P.; et al. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles. Physiol. Behav. 2015, 142, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Anstadt, M.P.; Stonnington, M.J.; Tedder, M.; Crain, B.J.; Brothers, M.F.; Hilleren, D.J.; Rahija, R.J.; Menius, J.A., Jr.; Lowe, J.E. Pulsatile reperfusion after cardiac arrest improves neurologic outcome. Ann. Surg. 1991, 214, 478. [Google Scholar] [CrossRef] [PubMed]
- Schulkin, J. Allostasis: A neural behavioral perspective. Horm. Behav. 2003, 43, 21–27. [Google Scholar] [CrossRef]
- Agnati, L.F.; Guidolin, D.; Guescini, M.; Battistin, L.; Stocchi, V.; De Caro, R.; Genedani, S.; Fuxe, K. Aspects on the integrative actions of the brain from neural networks to “brain-body medicine”. J. Recept. Signal Transduct. 2012, 32, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Brosschot, J.F. Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology 2005, 30, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Cameron, O.G. Visceral brain–body information transfer. Neuroimage 2009, 47, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, D.; Krajewski, W.; Viaro, U. (Eds.) A feedback model of evolutionary adaptation. In Proceedings of the 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 24–27 August 2015. [Google Scholar]
- Robertson, D.S. Feedback theory and Darwinian evolution. J. Theor. Boil. 1991, 152, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Vanvalen, L.M. A theory of origination and extinction. Evol. Theory 1985, 7, 133–142. [Google Scholar]
- Schwartz, S.J.; Zamboanga, B.L.; Weisskirch, R.S.; Wang, S.C. The relationships of personal and cultural identity to adaptive and maladaptive psychosocial functioning in emerging adults. J. Soc. Psychol. 2009, 150, 1–33. [Google Scholar] [CrossRef]
- Agnati, L.F.; Guidolin, D.; Marcoli, M.; Maura, G. Inner speech mis-exaptation can cause the “Hubris” that speeds up ecosystem over-exploitation. Neurol. Psychiatry Brain Res. 2018, 30, 62–73. [Google Scholar] [CrossRef]
- Lorenz, K. Die acht Todsünden der Zivilisierten Menschheit; R. Piper: Munchen, Austria, 1973. [Google Scholar]
- Lorenz, K.; Kreuzer, F. Leben ist Lernen. Von Immanuel Kant zu Konrad Lorenz, Ein Gesrache uber des Lebenwerk des Nobelpreistragers; Munchen: Zuric, Switzerland, 1981. [Google Scholar]
- De Montesquieu, B.C.L. De L’esprit des Lois; Livre XI (Originally published anonymously); Barrillot & Fils: Geneva, Switzerland, 1748. [Google Scholar]
- Lovelock, J. Gaia: The world as living organism. New Sci. 1986, 112, 25–28. [Google Scholar]
- Lovelock, J.E.; Margulis, L. Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus 1974, 26, 2–10. [Google Scholar] [CrossRef]
- Gould, S.J.; Vrba, E.S. Exaptation—A missing term in the science of form. Paleobiology 1982, 8, 4–15. [Google Scholar] [CrossRef]
- Xu, X.; Wang, K.; Zhang, K.; Ma, Q.; Xing, L.; Sullivan, C.; Hu, D.; Cheng, S.; Wang, S. A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 2012, 484, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Pievani, T.; Serrelli, E. Exaptation in human evolution: How to test adaptive vs exaptive evolutionary hypotheses. J. Anthropol. Sci. 2011, 89, 9–23. [Google Scholar] [PubMed]
- Blakemore, C. Mechanics of the Mind; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Vygotsky, L.; Kozulin, A. Thought and Language (Translation Newly Revised and Edited); MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Bellido-Zanin, G.; Perona-Garcelán, S.; Senín-Calderón, C.; López-Jiménez, A.M.; Rodríguez-Testal, J.F. Relationship between inner dialog and ideas of reference and the mediating role of dissociation. Scand. J. Psychol. 2017, 58, 100–106. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Rudel, T.K.; Verburg, P.H.; McConnell, W.J.; Mertz, O.; Gerstner, K.; Heinimann, A.; Ellis, E.C. Synthesis in land change science: Methodological patterns, challenges, and guidelines. Reg. Environ. Chang. 2015, 15, 211–226. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Ayeb-Karlsson, S.; Bai, Y.; Byass, P.; Campbell-Lendrum, D.; Colbourn, T.; Cox, P.; Davies, M.; Depledge, M.; et al. The Lancet Countdown: Tracking progress on health and climate change. Lancet 2017, 389, 1151–1164. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Hamilton, J.P.; Hahn, K.S.; Daily, G.C.; Gross, J.J. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl. Acad. Sci. USA 2015, 112, 8567–8572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Garcidueñas, L.; Leray, E.; Heydarpour, P.; Torres-Jardón, R.; Reis, J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev. Neurol. 2016, 172, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Speck, M.; Leingartner, K.; Shutt, R.; Pelletier, G.; Gold, D.R.; Scott, J.A.; Brook, J.R.; et al. Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ. Int. 2017, 101, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J.; et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Seidman, M.D.; Standring, R. Noise and quality of life. Int. J. Environ. Res. Public Health 2010, 7, 3730–3738. [Google Scholar] [CrossRef]
- Tzivian, L.; Jokisch, M.; Winkler, A.; Weimar, C.; Hennig, F.; Sugiri, D.; Soppa, V.J.; Dragano, N.; Erbel, R.; Jöckel, K.H.; et al. Associations of long-term exposure to air pollution and road traffic noise with cognitive function—An analysis of effect measure modification. Environ. Int. 2017, 103, 30–38. [Google Scholar] [CrossRef]
- Cole-Hunter, T.; de Nazelle, A.; Donaire-Gonzalez, D.; Kubesch, N.; Carrasco-Turigas, G.; Matt, F.; Foraster, M.; Martínez, T.; Ambros, A.; Cirach, M.; et al. Estimated effects of air pollution and space-time-activity on cardiopulmonary outcomes in healthy adults: A repeated measures study. Environ. Int. 2018, 111, 247–259. [Google Scholar] [CrossRef]
- Shutt, R.H.; Kauri, L.M.; Weichenthal, S.; Kumarathasan, P.; Vincent, R.; Thomson, E.M.; Liu, L.; Mahmud, M.; Cakmak, S.; Dales, R. Exposure to air pollution near a steel plant is associated with reduced heart rate variability: A randomised crossover study. Environ. Health 2017, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Rapport, D.J.; Whitford, W.G. How ecosystems respond to stress: Common properties of arid and aquatic systems. BioScience 1999, 49, 193–203. [Google Scholar] [CrossRef]
- Albrecht, G.; Sartore, G.M.; Connor, L.; Higginbotham, N.; Freeman, S.; Kelly, B.; Stain, H.; Tonna, A.; Pollard, G. Solastalgia: The distress caused by environmental change. Australas. Psychiatry 2007, 15, S95–S98. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Shanahan, D.; Hudson, H.; Fuller, R.; Anderson, K.; Hancock, S.; Gaston, K. Doses of nearby nature simultaneously associated with multiple health benefits. Int. J. Environ. Res. Public Health 2017, 14, 172. [Google Scholar] [CrossRef] [PubMed]
- MacSuibhne, S.P. What makes “a mental illness?” What makes “a new mental illness”? The cases of solastalgia and hubris syndrome. Cosm. Hist. J. Nat. Soc. Philos. 2009, 5, 210–225. [Google Scholar]
- Cox, D.T.; Shanahan, D.F.; Hudson, H.L.; Fuller, R.A.; Gaston, K.J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 2018, 179, 72–80. [Google Scholar] [CrossRef]
- Affifi, R. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations. Biosemiotics 2017, 10, 75–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sripada, K. “Beginning with the Smallest Intake”: Children’s Brain Development and the Role of Neuroscience in Global Environmental Health. Neuron 2017, 95, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Galway, L.P.; Beery, T.; Jones-Casey, K.; Tasala, K. Mapping the Solastalgia Literature: A Scoping Review Study. Int. J. Environ. Res. Public Health 2019, 16, 2662. [Google Scholar] [CrossRef]
- Louv, R. The Nature Principle: Reconnecting with Life in a Virtual Age; Algonquin Books: Chapel Hill, NC, USA, 2012. [Google Scholar]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef]
- Clayton, S.; Manning, C.; Krygsman, K.; Speiser, M. Mental Health and Our Changing Climate: Impacts, Implications, and Guidance; American Psychological Association and ecoAmerica: Washington, DC, USA, 2017. [Google Scholar]
- Hayes, K.; Poland, B. Addressing mental health in a changing climate: Incorporating mental health indicators into climate change and health vulnerability and adaptation assessments. Int. J. Environ. Res. Public Health 2018, 15, 1806. [Google Scholar] [CrossRef] [PubMed]
- Hachem, L.D.; Wong, S.M.; Ibrahim, G.M. The vagus afferent network: Emerging role in translational connectomics. Neurosurg. Focus 2018, 45, E2. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Mertgen, A. Vagal tank theory: The three rs of cardiac vagal control functioning–resting, reactivity, and recovery. Front. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Popper, K.R. Three Worlds: The Tanner Lecture on Human Values. Delivered at the University of Michigan, 7 April 1978. Available online: https://tannerlectures.utah.edu/_documents/a-to-z/p/popper80.pdf (accessed on 28 August 2019).
- Young, J. An Introduction to the Study of Man; The Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Khalsa, S.S.; Adolphs, R.; Cameron, O.G.; Critchley, H.D.; Davenport, P.W.; Feinstein, J.S.; Feusner, J.D.; Garfinkel, S.N.; Lane, R.D.; Mehling, W.E.; et al. Interoception and mental health: A roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Reynoso-Robles, R.; Vargas-Martínez, J.; Gómez-Maqueo-Chew, A.; Pérez-Guillé, B.; Mukherjee, P.S.; Torres-Jardón, R.; Perry, G.; Gónzalez-Maciel, A. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer’s disease. Environ. Res. 2016, 146, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Karoly, P. Mechanisms of self-regulation: A systems view. Annu. Rev. Psychol. 1993, 44, 23–52. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Sgoifo, A.; Montano, N.; Shively, C.; Thayer, J.; Steptoe, A. The inevitable link between heart and behavior. New insights from biomedical research and implications for clinical practice. Neurosci. Biobehav. Rev. 2009, 33, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef]
- Beissner, F.; Meissner, K.; Bär, K.-J.; Napadow, V. The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 2013, 33, 10503–10511. [Google Scholar] [CrossRef]
- Berthoud, H.-R.; Neuhuber, W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 2000, 85, 1–17. [Google Scholar] [CrossRef]
- Yuan, H.; Silberstein, S.D. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache J. Head Face Pain 2016, 56, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, X.; Jin, F. Gut brain psychology: Rethinking psychology from the microbiota–gut–brain axis. Front. Integr. Neurosci. 2018, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Xu, J.; Li, Z.; Huang, Y.; Yuan, Y.; Wang, J.; Zhang, M.; Hu, S.; Liang, Y. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr. Res. 2018, 197, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Picca, A.; Lo Monaco, M.R.; Landi, F.; Bernabei, R.; Marzetti, E. Of microbes and minds: A narrative review on the second brain aging. Front. Med. 2018, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Galvani, A.P.; Bauch, C.T.; Anand, M.; Singer, B.H.; Levin, S.A. Human–environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. USA 2016, 113, 14502–14506. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.; Kanukuntla, T.; Diaz, E.; Jafri, N.; Cummings, M.; Sfera, A. The Post-amyloid Era in Alzheimer’s Disease: Trust Your Gut Feeling. Front. Aging Neurosci. 2019, 11, 143. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidolin, D.; Anderlini, D.; Maura, G.; Marcoli, M.; Cortelli, P.; Calandra-Buonaura, G.; Woods, A.S.; Agnati, L.F. A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society. Int. J. Environ. Res. Public Health 2019, 16, 3136. https://doi.org/10.3390/ijerph16173136
Guidolin D, Anderlini D, Maura G, Marcoli M, Cortelli P, Calandra-Buonaura G, Woods AS, Agnati LF. A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society. International Journal of Environmental Research and Public Health. 2019; 16(17):3136. https://doi.org/10.3390/ijerph16173136
Chicago/Turabian StyleGuidolin, Diego, Deanna Anderlini, Guido Maura, Manuela Marcoli, Pietro Cortelli, Giovanna Calandra-Buonaura, Amina S. Woods, and Luigi F. Agnati. 2019. "A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society" International Journal of Environmental Research and Public Health 16, no. 17: 3136. https://doi.org/10.3390/ijerph16173136
APA StyleGuidolin, D., Anderlini, D., Maura, G., Marcoli, M., Cortelli, P., Calandra-Buonaura, G., Woods, A. S., & Agnati, L. F. (2019). A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society. International Journal of Environmental Research and Public Health, 16(17), 3136. https://doi.org/10.3390/ijerph16173136