Associations between Self-Reported Physical Activity, Heel Ultrasound Parameters and Bone Health Measures in Post-Menopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measurements of the Subjects
2.3. Physical Activity Questionnaire
- Walking MET-minutes/week at work = 3.3 * walking minutes * walking days at work.
- Moderate MET-minutes/week at work = 4.0 * moderate-intensity activity minutes * moderate intensity days at work.
- Vigorous MET-minutes/week at work = 8.0 * vigorous-intensity activity minutes * vigorous intensity days at work Total Work MET-minutes/week = sum of Walking + Moderate + Vigorous MET-minutes/week scores at work.
- Total PA MET-minutes/week = sum of walking + moderate + vigorous MET-minutes/week scores.
2.4. DXA and QUS Measurements
2.5. Calcium Intake Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Osteoporosis Foundation. Osteoporosis-Incidence and Burden. Available online: https://www.iofbonehealth.org/facts-statistics (accessed on 30 August 2019).
- World Health Organization. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation, Rome 17–24 October 2001; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, N.M.; Schmitt, J.; Dören, M. The role of physical activity in the prevention of osteoporosis in postmenopausal women—An update. Maturitas 2009, 63, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Qin, L.; Lau, M.; Woo, J.; Au, S.; Choy, W.; Lee, K.; Lee, S. A randomized, prospective study of the effects of tai chi chun exercise on bone mineral density in postmenopausal women 1. Arch. Phys. Med. Rehabil. 2004, 85, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Clo, A.; Gibellini, D.; Damiano, D.; Vescini, F.; Ponti, C.; Morini, S.; Miserocchi, A.; Musumeci, G.; Calza, L.; Colangeli, V.; et al. Calcaneal quantitative ultrasound (qus) and dual X-ray absorptiometry (dxa) bone analysis in adult hiv-positive patients. New Microbiol. 2015, 38, 345–356. [Google Scholar] [PubMed]
- Quiros Roldan, E.; Brianese, N.; Raffetti, E.; Foca, E.; Pezzoli, M.C.; Bonito, A.; Ferraresi, A.; Lanza, P.; Porcelli, T.; Castelli, F. Comparison between the gold standard dxa with calcaneal quantitative ultrasound based-strategy (qus) to detect osteoporosis in an hiv infected cohort. Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 2017, 21, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Rideout, C.; McKay, H.; Barr, S. Self-reported lifetime physical activity and areal bone mineral density in healthy postmenopausal women: The importance of teenage activity. Calcif. Tissue Int. 2006, 79, 214–222. [Google Scholar] [CrossRef]
- Santos, L.; Elliott-Sale, K.J.; Sale, C. Exercise and bone health across the lifespan. Biogerontology 2017, 18, 931–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M. Role of physical activity in the prevention of osteoporosis. Med. Monatsschr. Pharm. 2008, 31, 259–264. [Google Scholar]
- Tan, V.P.; Macdonald, H.M.; Kim, S.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef]
- Daly, R.M.; Dalla Via, J.; Duckham, R.L.; Fraser, S.F.; Helge, E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2018, 23, 170–180. [Google Scholar] [CrossRef]
- Troy, K.; Mancuso, M.; Butler, T.; Johnson, J. Exercise early and often: Effects of physical activity and exercise on women‘s bone health. Int. J. Environ. Res. Public Health 2018, 15, 878. [Google Scholar] [CrossRef] [PubMed]
- Muir, J.M.; Ye, C.; Bhandari, M.; Adachi, J.D.; Thabane, L. The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: A retrospective analysis from the canadian multicentre osteoporosis study. BMC Musculoskelet. Disord. 2013, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Furlini, G.; Zati, A.; Letizia Mauro, G. The effectiveness of physical exercise on bone density in osteoporotic patients. BioMed Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef] [PubMed]
- Neilson, H.K.; Robson, P.J.; Friedenreich, C.M.; Csizmadi, I. Estimating activity energy expenditure: How valid are physical activity questionnaires? Am. J. Clin. Nutr. 2008, 87, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of physical activity and energy expenditure: An overview of objective measures. Front. Nutr. 2014, 1, 5. [Google Scholar] [CrossRef]
- Ashok, P.; Kharche, J.; Raju, R.; Godbole, G. Metabolic equivalent task assessment for physical activity in medical students. Natl. J. Physiol. Pharm. Pharmacol. 2017, 7, 236–239. [Google Scholar] [CrossRef]
- Schulz, L.O.; Schoeller, D.A. A compilation of total daily energy expenditures and body weights in healthy adults. Am. J. Clin. Nutr. 1994, 60, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Ilesanmi-Oyelere, B.L.; Coad, J.; Roy, N.; Kruger, M.C. Lean body mass in the prediction of bone mineral density in postmenopausal women. BioResearch Open Access 2018, 7, 150–158. [Google Scholar] [CrossRef]
- McLean, G.; Tobias, M. The New Zealand Physical Activity Questionnaires: Report on the Validation and Use of the NZPAQ-LF and NZPAQ-SF Self-report Physical Activity Survey Instruments; SPARC: Washington, DC, USA, 2004. [Google Scholar]
- Boon, R.M.; Hamlin, M.J.; Steel, G.D.; Ross, J.J. Validation of the new zealand physical activity questionnaire (NZPAQ-LF) and the international physical activity questionnaire (IPAQ-LF) with accelerometry. Br. J. Sports Med. 2010, 44, 741–746. [Google Scholar] [CrossRef]
- IPAQ, R.C. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-short and Long Forms. 2005. Available online: http://www. ipaq. ki. se/scoring. pdf (accessed on 30 August 2019).
- World Health Organization. Who Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. 2011; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Westerterp, K.; Goran, M. Relationship between physical activity related energy expenditure and body composition: A gender difference. Int. J. Obes. 1997, 21, 184. [Google Scholar] [CrossRef]
- Grimble, R.F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin. Sci. 1996, 91, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Milliken, L.A.; Wilhelmy, J.; Martin, C.J.; Finkenthal, N.; Cussler, E.; Metcalfe, L.; Guido, T.A.; Going, S.B.; Lohman, T.G. Depressive symptoms and changes in body weight exert independent and site-specific effects on bone in postmenopausal women exercising for 1 year. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Everhart, J.E.; Patel, K.V.; Schoeller, D.A.; Colbert, L.H.; Visser, M.; Tylavsky, F.; Bauer, D.C.; Goodpaster, B.H.; Harris, T.B. Daily activity energy expenditure and mortality among older adults. JAMA 2006, 296, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Rising, R.; Harper, I.T.; Fontvielle, A.M.; Ferraro, R.T.; Spraul, M.; Ravussin, E. Determinants of total daily energy expenditure: Variability in physical activity. Am. J. Clin. Nutr. 1994, 59, 800–804. [Google Scholar] [CrossRef] [PubMed]
Parameters | (n = 125) |
---|---|
Mean ± SD | |
Age (years) | 62.6 ± 4.5 |
Weight (kg) | 69.3 ± 11.2 |
Height (cm) | 162.3 ± 5.3 |
BMI (kg/m2) | 26.3 ± 4.2 |
WC (cm) | 80.8 ± 10.8 |
HC (cm) | 99.3 ± 7.6 |
WH ratio | 0.8 ± 0.1 |
Spine BMC (g) | 54.2 ± 11.4 |
Spine BMD (g/cm2) | 0.94 ± 0.15 |
Spine T-score | −0.9 ± 1.4 |
Femoral neck BMC (g) | 3.6 ± 0.5 |
Femoral neck BMD (g/cm2) | 0.7 ± 0.1 |
Femoral neck T-score | −1.2 ± 0.9 |
Hip BMC (g) | 29.9 ± 5.1 |
Hip BMD (g/cm2) | 0.9 ± 0.1 |
Hip T-score | −0.7 ± 1.0 |
Whole body total fat mass (kg) | 29.4 ± 8.3 |
Whole body total lean mass (kg) | 40.6 ± 4.5 |
Whole body total fat % | 41.2 ± 6.5 |
Stiffness index | 88.9 ± 13.6 |
BUA (dB/MHz) | 110.7 ± 11.2 |
SOS (m/s) | 1554.4 ± 31.0 |
QUS T-score | −0.7 ± 0.9 |
QUS Z-score | 0.8 ± 0.8 |
AEE (Cal/day) | 479.1 ± 772.7 |
MVPA MET-minutes/week | 1644.0 ± 1970.4 |
Walk MET-minutes/week | 624.8 ± 839.1 |
Moderate MET-minutes/week | 918.2 ± 1028.3 |
Vigorous MET-minutes/week | 725.8 ± 1414.4 |
Total MET-minutes/week | 2268.8 ± 2374.5 |
Calcium intake (mg) | 1263.5 ± 851.4 |
ANCOVA Based on the Hip Osteoporotic Status | |||||
---|---|---|---|---|---|
Parameters | Sum of Squares 1 | Degrees of Freedom | Mean Square | F | p-Value |
Tertiles of Total METs | 2.033 | 2 | 1.017 | 5.769 | 0.004 |
Age (years) | 1.052 | 1 | 1.052 | 5.967 | 0.016 |
Weight (kg) | 5.818 | 1 | 5.818 | 33.013 | <0.001 |
Height (cm) | 0.058 | 1 | 0.058 | 0.327 | 0.568 |
Error | 20.972 | 119 | 0.176 | ||
Total | 50.000 | 125 |
Bone Health Equivalent Parameters | Activity Energy Expenditure (Cal/Day) | Metabolic of Task (Minutes/Week) |
---|---|---|
Spine BMD (g/cm2) | 0.110 ns | 0.106 ns |
Spine T-score | 0.104 ns | 0.100 ns |
Femoral neck BMD (g/cm2) | 0.208 * | 0.212 * |
Femoral neck T-score | 0.206 * | 0.210 * |
Hip BMD (g/cm2) | 0.144 ns | 0.147 ns |
Hip T-score | 0.121 ns | 0.123 ns |
Stiffness Index | 0.312 *** | 0.321 *** |
BUA (dB/MHz) | 0.162 ns | 0.160 ns |
SOS (m/s) | 0.341 *** | 0.356 *** |
QUS T-score | 0.313 *** | 0.323 *** |
QUS Z-score | 0.315 *** | 0.323 *** |
Fat mass (kg) | −0.134 ns | −0.170 ns |
Lean mass (kg) | 0.140 ns | 0.177 ns |
Fat % | −0.160 ns | −0.229 * |
Parameters | β | CI | R2 | p |
---|---|---|---|---|
Spine T-score | 0.341 | |||
Age (years) | 0.020 | −0.043, 0.055 | 0.803 | |
Fat mass (kg) | 0.293 | 0.016, 0.079 | 0.003 | |
Lean mass (kg) | 0.292 | 0.019, 0.159 | 0.013 | |
Height (cm) | −0.155 | −0.092, 0.010 | 0.116 | |
Calcium intake (mg) | 0.223 | 0.0001, 0.001 | 0.006 | |
AEE (Cal/day) | 0.212 | 0.000,0.001 | 0.015 | |
Femoral neck T-score | 0.367 | |||
Age (years) | −0.241 | −0.079, −0.017 | 0.003 | |
Fat mass (kg) | 0.142 | −0.006, 0.036 | 0.150 | |
Lean mass (kg) | 0.378 | 0.029, 0.118 | 0.001 | |
Height (cm) | 0.001 | −0.033, 0.033 | 0.991 | |
Calcium intake (mg) | 0.068 | 0.000, 0.0002 | 0.397 | |
AEE (Cal/day) | 0.156 | −0.000, 0.001 | 0.060 | |
Hip T-score | 0.338 | |||
Age (years) | −0.226 | −0.084, −0.015 | 0.006 | |
Fat mass (kg) | 0.254 | 0.007, 0.051 | 0.011 | |
Lean mass (kg) | 0.348 | 0.026, 0.124 | 0.003 | |
Height (cm) | −0.037 | −0.043, 0.029 | 0.710 | |
Calcium intake (mg) | 0.018 | −0.0002, 0.0002 | 0.821 | |
AEE (Cal/day) | 0.015 | −0.0002, 0.0002 | 0.863 | |
Whole body BMD | 0.198 | |||
Age (years) | −0.133 | −0.008, 0.001 | 0.136 | |
Fat mass (kg) | 0.034 | −0.002, 0.003 | 0.754 | |
Lean mass (kg) | 0.295 | 0.001, 0.013 | 0.022 | |
Height (cm) | 0.025 | −0.004, 0.005 | 0.815 | |
Calcium intake (mg) | 0.204 | 0.000, 0.000 | 0.022 | |
AEE (Cal/day) | 0.015 | −0.000, 0.000 | 0.873 | |
QUS T-score | 0.245 | |||
Age (years) | −0.197 | −0.071, −0.005 | 0.024 | |
Fat mass (kg) | 0.026 | −0.018, 0.024 | 0.805 | |
Lean mass (kg) | 0.312 | 0.013, 0.107 | 0.013 | |
Height (cm) | −0.031 | −0.040, 0.029 | 0.771 | |
Calcium intake (mg) | −0.102 | −0.000, 0.0001 | 0.234 | |
AEE (Cal/day) | 0.239 | 0.000, 0.001 | 0.011 | |
Stiffness Index | 0.246 | |||
Age (years) | −0.196 | −1.133, −0.083 | 0.024 | |
Fat mass (kg) | 0.022 | −0.301, 0.373 | 0.832 | |
Lean mass (kg) | 0.314 | 0.214, 1.999 | 0.012 | |
Height (cm) | −0.031 | −0.633, 0.469 | 0.769 | |
Calcium intake (mg) | −0.098 | −0.004, 0.001 | 0.252 | |
AEE (Cal/day) | 0.240 | 0.001, 0.007 | 0.010 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilesanmi-Oyelere, B.L.; Roy, N.C.; Coad, J.; Kruger, M.C. Associations between Self-Reported Physical Activity, Heel Ultrasound Parameters and Bone Health Measures in Post-Menopausal Women. Int. J. Environ. Res. Public Health 2019, 16, 3177. https://doi.org/10.3390/ijerph16173177
Ilesanmi-Oyelere BL, Roy NC, Coad J, Kruger MC. Associations between Self-Reported Physical Activity, Heel Ultrasound Parameters and Bone Health Measures in Post-Menopausal Women. International Journal of Environmental Research and Public Health. 2019; 16(17):3177. https://doi.org/10.3390/ijerph16173177
Chicago/Turabian StyleIlesanmi-Oyelere, Bolaji Lilian, Nicole C. Roy, Jane Coad, and Marlena Cathorina Kruger. 2019. "Associations between Self-Reported Physical Activity, Heel Ultrasound Parameters and Bone Health Measures in Post-Menopausal Women" International Journal of Environmental Research and Public Health 16, no. 17: 3177. https://doi.org/10.3390/ijerph16173177
APA StyleIlesanmi-Oyelere, B. L., Roy, N. C., Coad, J., & Kruger, M. C. (2019). Associations between Self-Reported Physical Activity, Heel Ultrasound Parameters and Bone Health Measures in Post-Menopausal Women. International Journal of Environmental Research and Public Health, 16(17), 3177. https://doi.org/10.3390/ijerph16173177