Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Soil Characteristics
2.2. Treatment Reactors
2.3. Analytical Methods
2.4. Experimental Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Xie, T.; Li, X.; Wang, R. Thinking of construction of soil pollution prevention and control technology system in China. Acta Pedol. Sin. 2018, 55, 557–568. [Google Scholar]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Piroli, E.; Montanarella, L. Policy instruments for soil protection among the EU member states: A comparative analysis. Land Use Policy 2019, 82, 763–780. [Google Scholar] [CrossRef]
- Song, Y.; Hou, D.; Zhang, J.; O’Connor, D.; Li, G.; Gu, Q.; Li, S.; Liu, P. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Sci. Total Environ. 2018, 610, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Huysegoms, L.; Cappuyns, V. Critical review of decision support tools for sustainability assessment of site remediation options. J. Environ. Manag. 2017, 196, 278–296. [Google Scholar] [CrossRef] [PubMed]
- Gereslassie, T.; Workineh, A.; Atieno, O.J.; Wang, J. Determination of occurrences, distribution, health impacts of organochlorine pesticides in soils of central China. Int. J. Environ. Res. Public Health 2019, 16, 146. [Google Scholar] [CrossRef] [PubMed]
- Breure, A.M.; Lijzen, J.P.A.; Maring, L. Soil and land management in a circular economy. Sci. Total Environ. 2018, 624, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Matinfar, F.; Nezhadian, S.K.; Mirzakarimi, M.; Hosseini, S.L. Evaluation of Petroleum Hydrocarbons Uptake by Fetsuca and Geranium: A Case Study at Gasoil Station in Jajrood, Tehran, Iran. Biosci. Biotechnol. Res. Asia 2013, 10, 789–795. [Google Scholar] [CrossRef]
- Wang, B.; Wen, C.; Sun, Q.; Zhao, F. Effects of petroleum hydrocarbon pollution on soil microbial diversity in permafrost region of Beiluhe area of Qinghai-Tibet plateau. Chin. J. Environ. Eng. 2018, 12, 2917–2928. [Google Scholar]
- Garcia-Gonzales, D.A.; Shonkoff, S.B.; Hays, J.; Jerrett, M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu. Rev. Public Health 2019, 40, 283–304. [Google Scholar] [CrossRef] [Green Version]
- Pehnec, G.; JakovljeviĆ, I. Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size. Int. J. Environ. Res. Public Health 2018, 15, 2485. [Google Scholar] [CrossRef]
- Singleton, B.; Turner, J.; Walter, L.; Lathan, N.; Thorpe, D.; Ogbevoen, P.; Daye, J.; Alcorn, D.; Wilson, S.; Semien, J.; et al. Environmental stress in the Gulf of Mexico and its potential impact on public health. Environ. Res. 2016, 146, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Schaum, J.; Cohen, M.; Perry, S.; Artz, R.; Draxler, R.; Frithsen, J.B.; Heist, D.; Lorber, M.; Phillips, L. Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deepwater Horizon Gulf of Mexico spill. Environ. Sci. Technol. 2010, 44, 9383–9389. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Clement, T.P. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches. PLoS ONE 2018, 13, e0190508. [Google Scholar] [CrossRef] [PubMed]
- Babcock-Adams, L.; Chanton, J.P.; Joye, S.B.; Medeiros, P.M. Hydrocarbon composition and concentrations in the Gulf of Mexico sediments in the 3 years following the Macondo well blowout. Environ. Pollut. 2017, 229, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Hatami, E.; Abbaspour, A.; Dorostkar, V. Phytoremediation of a petroleum-polluted soil by native plant species in Lorestan Province, Iran. Environ. Sci. Pollut. Res. 2018, 26, 24323–24330. [Google Scholar] [CrossRef] [PubMed]
- Schwitzguébel, J.-P. Phytoremediation of soils contaminated by organic compounds: Hype, hope and facts. J. Soils Sediments 2017, 17, 1492–1502. [Google Scholar] [CrossRef]
- Dhir, B. Phytoremediation. Mod. Approaches Environ. Biotechnol. 2016, 151–180. [Google Scholar]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Dai, J.; Liang, J.; Yu, J.; Ren, X.; Yi, H.; Cheng, M.; et al. Biological technologies for the remediation of contaminated soil. Crit. Rev. Biotechnol. 2017, 37, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Xiong, W.; Wan, J.; Xu, P.; Cheng, M. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1528–1553. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Xiong, W.; Song, B.; Wu, S.; Yu, J. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 2019, 140, 278–285. [Google Scholar] [CrossRef]
- Gao, Y.-C.; Guo, S.-H.; Wang, J.-N.; Li, D.; Wang, H.; Zeng, D.-H. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 2014, 117, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kwon, T.S.; Park, J.Y.; Choi, S.; Kim, E.J.; Lee, H.U.; Lee, Y.C. Electrokinetic (EK) removal of soil co-contaminated with petroleum oils and heavy metals in three-dimensional (3D) small-scale reactor. Process Saf. Environ. Prot. 2016, 99, 186–193. [Google Scholar] [CrossRef]
- Rocha, I.; Silva, K.; Silva, D.; Martínez-Huitle, C.; Santos, E. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Sep. Purif. Technol. 2019, 208, 194–200. [Google Scholar] [CrossRef]
- De Figueredo, K.S.L.; Martínez-Huitle, C.A.; Teixeira, A.B.R.; De Pinho, A.L.S.; Vivacqua, C.A.; Da Silva, D.R. Study of produced water using hydrochemistry and multivariate statistics in different production zones of mature fields in the Potiguar Basin—Brazil. J. Pet. Sci. Eng. 2014, 116, 109–114. [Google Scholar] [CrossRef]
- Mena, E.; Ruiz, C.; Villaseñor, J.; Rodrigo, M.A.; Cañizares, P. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. J. Hazard. Mater. 2015, 283, 131–139. [Google Scholar] [CrossRef]
- Todd, G.D.; Chessin, R.L.; Colman, J. Toxicological Profile for Total Petroleum Hydrocarbons; U.S. Department of Health and Human Services Public Health Service, Agency for Toxic Substances and Disease Registry: Washington, DC, USA, 1999; p. 1235.
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects); Scientific Supporting Document: Winnipeg, MB, Canada, 2008; pp. 1–218. [Google Scholar]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Mehdieh, M.; Yazdani, M.; Mehdjeh, S. The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ. Monit. Assess. 2013, 185, 7877–7881. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.; Bellitürk, K.; Görres, J.H. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. Int. J. Environ. Res. Public Health 2019, 16, 1261. [Google Scholar] [CrossRef]
- Liu, J.; Xin, X.; Zhou, Q. Phytoremediation of contaminated soils using ornamental plants. Environ. Rev. 2018, 26, 43–54. [Google Scholar] [CrossRef]
- Dodangeh, H.; Rahimi, G.; Fallah, M.; Ebrahimi, E. Investigation of heavy metal uptake by three types of ornamental plants as affected by application of organic and chemical fertilizers in contaminated soils. Environ. Earth Sci. 2018, 77, 473. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Cai, Z.; Liu, J.; Yu, B.; Zhou, Q. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Int. J. Phytoremediation 2017, 19, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Nakbanpote, W.; Meesungnoen, O.; Prasad, M.N.V. Chapter 9—Potential of ornamental plants for phytoremediation of heavy metals and income generation. Book Bioremediat. Bioeconomy 2016, 179–217. [Google Scholar]
- Ranieri, E.; Fratino, U.; Petrella, A.; Torretta, V.; Rada, E.C. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 15983–15989. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Cameselle, C. Electrochemical Remediation Technologies for Polluted Soils; Sediments and Groundwater; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Da Cunha, A.C.B.; Sabedot, S.; Sampaio, C.H.; Ramos, C.G.; Da Silva, A.R. Salix rubens and Salix triandra Species as Phytoremediators of Soil Contaminated with Petroleum-Derived Hydrocarbons. Water Air Soil Pollut. 2012, 223, 4723–4731. [Google Scholar] [CrossRef]
- Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E.; Vilar, M.A. Mathematical analysis and optimal control of heavy metals phytoremediation techniques. Appl. Math. Model. 2019, 73, 387–400. [Google Scholar] [CrossRef]
- Bedard, D.L. Polychlorinated Biphenyls in Aquatic Sediments: Environmental Fate and Outlook for Biological Treatment. In Dehalogenation: Microbial Processes and Environmental Applications; Haggblom, M.M., Bossert, I., Eds.; Kluwer Press: Groningen, The Netherlands, 2003; pp. 443–465. [Google Scholar]
- Adriano, D.C.; Bollag, J.M.; Frankenberger, W.T.; Sims, R.C. Bioremediation of Contaminated Soils; Agronomy Monograph 37; American Society of Agronomy: Madison, WI, USA, 1999. [Google Scholar]
- Ranc, B.; Faure, P.; Croze, V.; Simonnot, M. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2016, 312, 280–297. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Z.; Li, Y.; Cao, H.; Su, C. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 2019, 226, 483–491. [Google Scholar] [CrossRef]
- Oprea, I.; Badea, A.; Ziglio, G.; Ragazzi, M.; Andreottola, G.; Ferrarese, E.; Apostol, T. The remediation of contaminated sediments by chemical oxidation. UPB Sci. Bull. 2009, 71, 131–142. [Google Scholar]
- Istrate, I.A. Advanced Chemical and Electrochemical Techniques for the Remediation of Petroleum Contaminated Sites. Ph.D. Thesis, University Politehnica of Bucharest, Romania and University of Trento, Trento, Italy, 2009. [Google Scholar]
- Rodrigo, S.; Sáez, C.; Navarro, V.; Cañizares, P.; Rodrigo, M. Are electrochemical fences effective in the retention of pollution? Sep. Purif. Technol. 2018, 201, 19–24. [Google Scholar] [CrossRef]
- Prostov, S.; Shabanov, E. Geological-and-Geophysical Monitoring of Electrochemical Cleaning of Soil from Petroleum Pollution. E3S Web Conf. 2018, 41, 02002. [Google Scholar] [CrossRef]
- Rada, E.C.; Istrate, I.A. The Applicability of Electrical Current Based Treatment for the Remediation of Different Types of Polluted Soils Contaminated by Organic Compounds. J. Bioremediat. Biodegrad. 2012, 3, 1000150. [Google Scholar] [CrossRef]
- Istrate, I.A.; Grigoriu, M.; Badea, A.; Rada, E.C.; Ragazzi, M.; Andreottola, G. The assessment of chemical and electrochemical treatment for the remediation of diesel contaminated soils. In Proceedings of the International Conference on Risk Management, Assessment and Mitigation (RIMA’10), Bucharest, Romania, 20–22 April 2010; pp. 144–149. [Google Scholar]
- Martin, B.C.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2014, 472, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Hodko, D.; Hyfte, J.V.; Denvir, A.; Magnuson, J.W. Methods for Enhancing Phytoextraction of Contaminants from Porous Media Using Electrokinetic Phenomena. U.S. Patent No. 6,145,244, 14 November 2000. [Google Scholar]
- Bedmar, M.C.L.; Sanz, A.P.; Inigo, M.J.M.; Benito, A.P. Influence of coupled electrokinetic-phytoremediation on soil remediation. In Electrochemical Remediation Technologies for Polluted Soils; Reddy, K.R., Cameselle, C., Eds.; Sediments and Groundwater; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chirakkara, R.A.; Reddy, K.R.; Cameselle, C. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochim. Acta 2015, 181, 179–191. [Google Scholar] [CrossRef]
- Acosta-Santoyo, G.; Cameselle, C.; Bustos, E. Electrokinetic—Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds. Environ. Res. 2017, 158, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Schlaak, M.; Siefert, E.; Lord, R.; Connolly, H. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination. J. Appl. Electrochem. 2010, 40, 1217–1223. [Google Scholar] [CrossRef]
- Cameselle, C.; Chirakkara, R.A.; Reddy, K.R. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere 2013, 93, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Orroño, D.I.; Lavado, R.S. Heavy metal accumulation in Pelargonium hortorum: Effects on growth and development. Phyton 2009, 78, 75–82. [Google Scholar]
- Newman, L.A.; Reynolds, C.M. Phytodegradation of organic compounds. Curr. Opin. Biotechnol. 2004, 15, 225–230. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard. Mater. 2019, 361, 95–102. [Google Scholar] [CrossRef]
Soil Characteristics | Values |
---|---|
Density | 1.5 g/cm3 |
Moisture | 20% |
Soil granulometry | 12.78%, d > 4 mm |
3.34%, d > 2 mm | |
27.7%, d > 0.8 mm | |
56.17%, d < 0.8 mm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rada, E.C.; Andreottola, G.; Istrate, I.A.; Viotti, P.; Conti, F.; Magaril, E.R. Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. Int. J. Environ. Res. Public Health 2019, 16, 3179. https://doi.org/10.3390/ijerph16173179
Rada EC, Andreottola G, Istrate IA, Viotti P, Conti F, Magaril ER. Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. International Journal of Environmental Research and Public Health. 2019; 16(17):3179. https://doi.org/10.3390/ijerph16173179
Chicago/Turabian StyleRada, Elena Cristina, Gianni Andreottola, Irina Aura Istrate, Paolo Viotti, Fabio Conti, and Elena Romenovna Magaril. 2019. "Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT" International Journal of Environmental Research and Public Health 16, no. 17: 3179. https://doi.org/10.3390/ijerph16173179
APA StyleRada, E. C., Andreottola, G., Istrate, I. A., Viotti, P., Conti, F., & Magaril, E. R. (2019). Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. International Journal of Environmental Research and Public Health, 16(17), 3179. https://doi.org/10.3390/ijerph16173179