Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Soil Physicochemical Analysis
2.3. Soil Biomass Carbon and Enzyme Activity Determination
2.4. TM Analysis
2.5. Statistical Analysis
3. Results
3.1. Changes in Rhizosphere Soil Properties
3.2. TM Contents in Rhizosphere Soils
3.3. Distribution of TM Fractions in Rhizosphere Soils
3.4. Differences in BAF among Farmlands Irrigated with Wastewater from Different Sources
3.5. Effects of Physicochemical Properties and TM Fractions on BAF in Farmlands Irrigated with Wastewater from Different Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friedel, J.; Langer, T.; Siebe, C.; Stahr, K. Effects of long-Term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol. Fertil. Soils 2000, 31, 414–421. [Google Scholar] [CrossRef]
- Tan, W.; Wang, G.; Huang, C.; Gao, R.; Xi, B.; Zhu, B. Physico-Chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Sci. Total Environ. 2017, 598, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Raschid, L.; Hanjra, M.A.; Marikar, F.; Van Der Hoek, W. Wastewater Use in Agriculture: Review of Impacts and Methodological Issues in Valuing Impacts; IWMI: Colombo, Sri Lanka, 2002. [Google Scholar]
- Maldonado, V.; Rubio Arias, H.; Quintana, R.; Saucedo, R.; Gutierrez, M.; Ortega, J.; Nevarez, G. Heavy metal content in soils under different wastewater irrigation patterns in Chihuahua, Mexico. Int. J. Environ. Res. Public Health 2008, 5, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, J.; Wang, R.; Zhang, J. Effects of long-Term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. Eur. J. Soil Boil. 2008, 44, 84–91. [Google Scholar] [CrossRef]
- Nan, Z.; Zhao, C.; Li, J.; Chen, F.; Sun, W. Relations between soil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils. Water Air Soil Pollut. 2002, 133, 205–213. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, S.; Sun, B.; Zhao, Q. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Sci. Total Environ. 2008, 405, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Hu, H.; Li, J.; Huang, L.; Yang, H.; Lv, Y. Effects of soil polluted by cadmium and lead on production and quality of pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). J. Food Agric. Environ. 2009, 7, 698–702. [Google Scholar]
- Fu, Q.; Zhao, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Zhou, Z.; Yang, L. Effects of biochar addition on soil hydraulic properties before and after freezing-Thawing. Catena 2019, 176, 112–124. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol. Res. 2006, 161, 93–101. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, Q.; Ma, Z.B.; Wang, X.M.; Chen, H.; Wang, J.J. Fractionation and mobility risks of heavy metals and metalloids in wastewater-Irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma 2018, 328, 1–9. [Google Scholar] [CrossRef]
- Li, B.; Cao, Y.; Guan, X.; Li, Y.; Hao, Z.; Hu, W.; Chen, L. Microbial assessments of soil with a 40-Year history of reclaimed wastewater irrigation. Sci. Total Environ. 2019, 651, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Li, L.; Yan, J. Characteristics of water–Heat variation and the transfer relationship in sandy loam under different conditions. Geoderma 2019, 340, 259–268. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Bhattacharyya, A. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008, 70, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Massaquoi, L.D.; Ma, H.; Liu, X.H.; Han, P.Y.; Zuo, S.M.; Hua, Z.X.; Liu, D.W. Heavy metal accumulation in soils, plants, and hair samples: An assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater. Environ. Sci. Pollut. Res. 2015, 22, 18456–18468. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; Cai, L.; Mo, L.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- Bacon, J.R.; Davidson, C.M. Is there a future for sequential chemical extraction? Analyst 2008, 133, 25–46. [Google Scholar] [CrossRef]
- Tao, S.; Chen, Y.; Xu, F.; Cao, J.; Li, B. Changes of copper speciation in maize rhizosphere soil. Environ. Pollut. 2003, 122, 447–454. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Afyuni, M.; Norouzi, M.; Ghiasi, S.; Schulin, R. Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma 2018, 309, 1–6. [Google Scholar] [CrossRef]
- Ata, R.; Töre, G.Y. Characterization and removal of antibiotic residues by NFC-Doped photocatalytic oxidation from domestic and industrial secondary treated wastewaters in Meric-Ergene Basin and reuse assessment for irrigation. J. Environ. Manag. 2019, 233, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.X.T.; Amyot, M.; Labrecque, M. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere 2017, 168, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, Z.; Li, X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geochem. 2004, 19, 1553–1565. [Google Scholar] [CrossRef]
- Nayek, S.; Gupta, S.; Saha, R. Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. J. Hazard. Mater. 2010, 178, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, Y.; Xi, B.; He, X.; Gao, R.; Huang, C.; Zhang, H.; Li, D.; Zhao, X.; Li, M. Discrepant responses of the electron transfer capacity of soil humic substances to irrigations with wastewaters from different sources. Sci. Total Environ. 2018, 610, 333–341. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, C.; Meng, F. Economic loss evaluation of agricultural environmental pollution from wastewater irrigation in Hebei Province. Chin. J. Eco-Agric. 2004, 12, 176–179. [Google Scholar]
- Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. Methods Soil Anal. Part 1996, 3, 417–435. [Google Scholar]
- Vieira, F.; Bayer, C.; Zanatta, J.; Dieckow, J.; Mielniczuk, J.; He, Z. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Tillage Res. 2007, 96, 195–204. [Google Scholar] [CrossRef]
- Xie, Y.F.; Li, X.W.; Wang, J.F.; Christakos, G.; Hu, M.G.; An, L.H.; Li, F.S. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China. Sci. Total Environ. 2012, 430, 126–131. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Boil. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, Z.; Cheng, S.; He, F.; Fu, G. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biol. Biochem. 2005, 37, 1454–1459. [Google Scholar] [CrossRef]
- Fujii, K.; Uemura, M.; Hayakawa, C.; Funakawa, S.; Kosaki, T. Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem. 2013, 57, 109–115. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 2015, 58, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Pascual, J.A.; Hernandez, T.; Garcia, C.; Ayuso, M. Enzymatic activities in an arid soil amended with urban organic wastes: Laboratory experiment. Bioresour. Technol. 1998, 64, 131–138. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the Peoples’ Republic of China (MEPPRC). Environmental Quality Standard for Soils GB15618-1995; China Standard Press: Beijing, China, 1995. Available online: http://kjs.mee.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/t19960301_82028.shtml (accessed on 1 March 1996).
- Zhao, K.; Liu, X.; Zhang, W.; Xu, J.; Wang, F. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale. J. Soils Sediments 2011, 11, 1165. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Monreal, C.M. Effects of soil properties and trace metals on urease activities of calcareous soils. Biol. Fertil. Soils 2004, 40, 359–362. [Google Scholar] [CrossRef]
- Adrover, M.; Farrús, E.; Moyà, G.; Vadell, J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manag. 2012, 95, S188–S192. [Google Scholar] [CrossRef]
- Mancino, C.; Pepper, I. Irrigation of turfgrass with secondary sewage effluent: Soil quality. Agron. J. 1992, 84, 650–654. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465. [Google Scholar] [CrossRef]
- Tarchouna, L.G.; Merdy, P.; Raynaud, M.; Pfeifer, H.R.; Lucas, Y. Effects of long-Term irrigation with treated wastewater. Part I: Evolution of soil physico-chemical properties. Appl. Geochem. 2010, 25, 1703–1710. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-Solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Shuzhuan, W.; Xiaorong, W.; Mingde, H. Dynamics and availability of different pools of manganese in semiarid soils as affected by cropping system and fertilization. Pedosphere 2016, 26, 351–361. [Google Scholar]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.S.; Liao, M.; Chen, C.L.; Huang, C.Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf. 2007, 67, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Kashem, M.; Singh, B. Metal availability in contaminated soils: I. Effects of floodingand organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosyst. 2001, 61, 247–255. [Google Scholar] [CrossRef]
- Guwy, A.; Martin, S.; Hawkes, F.; Hawkes, D. Catalase activity measurements in suspended aerobic biomass and soil samples. Enzyme Microb. Technol. 1999, 25, 669–676. [Google Scholar] [CrossRef]
- Weng, L.; Temminghoff, E.J.; Lofts, S.; Tipping, E.; Van Riemsdijk, W.H. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002, 36, 4804–4810. [Google Scholar] [CrossRef]
- Gong, C.; Donahoe, R.J. An experimental study of heavy metal attenuation and mobility in sandy loam soils. Appl. Geochem. 1997, 12, 243–254. [Google Scholar] [CrossRef]
Control | TWIF | PWIF | DWIF | |
---|---|---|---|---|
TOC (g/kg) | 12.19 ± 0.96 | 12.97 ± 4.88 | 17.40 ± 3.64 * | 14.34 ± 1.48 * |
DOC (g/kg) | 1.08 ± 0.16 | 1.24 ± 0.10 | 1.95 ± 0.34 * | 1.87 ± 0.19 * |
KMnO4-C (g/kg) | 2.03 ± 0.22 | 2.32 ± 0.23 | 4.27 ± 0.40 * | 4.16 ± 0.56 * |
Total antibiotics (µg/kg) | 856.01 ± 108.33 | 910.31 ± 63.04 | 1534.69 ± 117.20 * | 1007.66 ± 76.58 |
Soil pH | 7.63 ± 0.39 | 7.52 ± 0.97 | 8.13 ± 0.68 | 6.85 ± 0.89 |
Clay (%) | 35.00 ± 1.82 | 34.47 ± 3.54 | 39.50 ± 3.87 * | 30.64 ± 2.80 * |
Eh (mV) | 72.48 ± 7.37 | 85.34 ± 8.90 * | 63.96 ± 9.25 * | 95.98 ± 8.48 * |
CEC (cmol+/kg) | 19.28 ± 3.58 | 24.04 ± 4.37 * | 19.54 ± 2.01 | 16.58 ± 2.30 |
N (g/kg) | 1.72 ± 0.34 | 1.54 ± 0.36 | 2.31 ± 0.32 | 2.39 ± 0.90 |
P (g/kg) | 0.58 ± 0.06 | 0.59 ± 0.08 | 0.99 ± 0.11 | 0.82 ± 0.13 |
K (g/kg) | 23.91 ± 4.27 | 19.34 ± 3.69 | 21.95 ± 7.03 | 27.22 ± 4.66 |
Ca (g/kg) | 21.64 ± 8.90 | 18.74 ± 11.45 | 22.20 ± 8.91 | 18.98 ± 5.96 |
Mg (g/kg) | 1.37 ± 1.25 | 0.79 ± 1.55 | 1.55 ± 1.11 | 1.15 ± 0.80 |
S (g/kg) | 1.34 ± 0.34 | 1.28 ± 0.41 | 0.80 ± 0.27 | 0.91 ± 0.32 |
Fe (g/kg) | 56.01 ± 28.30 | 73.60 ± 20.11 * | 51.85 ± 25.12 | 52.23 ± 14.48 |
Mn (g/kg) | 0.83 ± 0.21 | 1.01 ± 0.15 | 0.93 ± 0.11 | 0.98 ± 0.12 |
Catalase (mL/(20 mM KMnO4) h/g) | 4.25 ± 1.54 | 11.27 ± 3.63 * | 8.41 ± 1.92 * | 9.86 ± 3.34 * |
LiP (µmol/min/g) | 1,43 ± 0.26 | 1.64 ± 0.35 | 1.09 ± 0.44 * | 2.18 ± 0.65 * |
MnP (µmol/min/g) | 4.3 ± 0.62 | 4.41 ± 0.56 | 3.87 ± 0.82 | 4.46 ± 1.45 |
Lac (µmol/min/g) | 1.91 ± 0.41 | 1.86 ± 0.21 | 1.52 ± 0.36 * | 2.75 ± 0.44 * |
Biomass (g/kg) | 0.35 ± 0.05 | 0.26 ± 0.06 * | 0.26 ± 0.08 * | 0.44 ± 0.06 * |
Control | TWIF | PWIF | DWIF | Background a | Threshold b | |
---|---|---|---|---|---|---|
Cu | 26.27 ± 2.33 | 40.06 ± 3.92 * | 30.08 ± 3.86 * | 30.53 ± 3.98 * | 35 | 100 |
Cr | 90.02 ± 10.47 | 189.61 ± 16.55 * | 92.78 ± 6.61 | 100.88 ± 18.46 * | 90 | 350 |
Cd | 1.26 ± 0.16 | 1.71 ± 0.13 * | 1.34 ± 0.16 | 1.24 ± 0.06 | 0.2 | 10 |
As | 13.24 ± 1.08 | 13.52 ± 0.89 | 13.22 ± 1.30 | 11.63 ± 0.78 * | 15 | 20 |
Pb | 25.26 ± 1.18 | 43.94 ± 5.45 * | 24.20 ± 0.86 | 26.32 ± 3.98 | 35 | 350 |
Ni | 80.44 ± 8.72 | 105.43 ± 9.60 * | 73.11 ± 5.83 | 78.99 ± 8.37 | 40 | 60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhang, Y.; Yu, H.; Dang, Q.; Yu, H.; Xi, B.; Tan, W. Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment. Int. J. Environ. Res. Public Health 2019, 16, 3218. https://doi.org/10.3390/ijerph16173218
Li R, Zhang Y, Yu H, Dang Q, Yu H, Xi B, Tan W. Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment. International Journal of Environmental Research and Public Health. 2019; 16(17):3218. https://doi.org/10.3390/ijerph16173218
Chicago/Turabian StyleLi, Renfei, Yuan Zhang, Hong Yu, Qiuling Dang, Hanxia Yu, Beidou Xi, and Wenbing Tan. 2019. "Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment" International Journal of Environmental Research and Public Health 16, no. 17: 3218. https://doi.org/10.3390/ijerph16173218
APA StyleLi, R., Zhang, Y., Yu, H., Dang, Q., Yu, H., Xi, B., & Tan, W. (2019). Biouptake Responses of Trace Metals to Long-Term Irrigation with Diverse Wastewater in the Wheat Rhizosphere Microenvironment. International Journal of Environmental Research and Public Health, 16(17), 3218. https://doi.org/10.3390/ijerph16173218