The Associations of Vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physique and Skeletal Maturation
2.3. Body Composition and Bone Mineral Density
2.4. Serum 25-hydroxyvitamin D and Blood-borne Markers
2.5. Athletic Performance
2.6. Nutritional Intake
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamada, T.; Liu, L.; Nowak, J.A.; Mima, K.; Cao, Y.; Ng, K.; Twombly, T.S.; Song, M.; Jung, S.; Dou, R. Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur. J. Cancer 2018, 103, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, M. Vitamin D and human health. Int. J. Mol. Sci. 2019, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the athlete: Current perspectives and new challenges. Sports Med. 2018, 48, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Abrams, G.D.; Feldman, D.; Safran, M.R. Effects of vitamin D on skeletal muscle and athletic performance. J. Am. Acad. Orthop. Surg. 2018, 26, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Quan, M.; Cao, Z.B. Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis. PLoS ONE 2019, 14, e0215826. [Google Scholar] [CrossRef]
- Bauer, P.; Henni, S.; Dörr, O.; Bauer, T.; Hamm, C.W.; Most, A. High prevalence of vitamin D insufficiency in professional handball athletes. Phys. Sportsmed. 2019, 47, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo, B.J.; Bernard, J.A.; Werner, B.C.; Finlay, A.K.; Nwachukwu, B.U.; Dare, D.M.; Warren, R.F.; Rodeo, S.A. The association of vitamin D status in lower extremity muscle strains and core muscle injuries at the national football league combine. Arthroscopy 2018, 34, 1280–1285. [Google Scholar] [CrossRef]
- Maroon, J.C.; Mathyssek, C.M.; Bost, J.W.; Amos, A.; Winkelman, R.; Yates, A.P.; Duca, M.A.; Norwig, J.A. Vitamin D profile in national football league players. Am. J. Sports Med. 2015, 43, 1241–1245. [Google Scholar] [CrossRef]
- Hamilton, B.; Whiteley, R.; Farooq, A.; Chalabi, H. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J. Sci. Med. Sport 2014, 17, 139–143. [Google Scholar] [CrossRef]
- Jung, H.C.; Seo, M.W.; Lee, S.; Jung, S.W.; Song, J.K. Correcting vitamin D insufficiency improves some but not all aspects of physical performance during winter training in taekwondo athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 635–643. [Google Scholar] [CrossRef]
- Dubnov-Raz, G.; Livne, N.; Raz, R.; Cohen, A.H.; Constantini, N.W. Vitamin D supplementation and physical performance in adolescent swimmers. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Dubnov-Raz, G.; Hemilä, H.; Cohen, A.H.; Rinat, B.; Choleva, L.; Constantini, N.W. Vitamin D supplementation and upper respiratory tract infections in adolescent swimmers: A randomized controlled trial. Pediatr. Exerc. Cci. 2015, 27, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L.; Hartmann, K.; Strupler, M.; Perret, C. Vitamin D deficiency in swiss elite wheelchair athletes. Spinal. Cord. 2016, 54, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, K.; Pritchett, R.; Ogan, D.; Bishop, P.; Broad, E.; LaCroix, M. 25(OH)D status of elite athletes with spinal cord injury relative to lifestyle factors. Nutrients 2016, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic and consequences for nonskeletal health: Mechanisms of action. Mol. Aspects Med. 2008, 29, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, B. Vitamin D and human skeletal muscle. Scand. J. Med. Sci. Sports 2010, 20, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L. Vitamin D and its role in skeletal muscle. Curr. Opin. Clin. Nutr. Metab Care. 2009, 12, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceglia, L. Vitamin D and skeletal muscle tissue and function. Mol. Aspects Med. 2008, 29, 407–414. [Google Scholar] [CrossRef]
- Stewart, J.W.; Alekel, D.L.; Ritland, L.M.; Van Loan, M.; Gertz, E.; Genschel, U. Serum 25-hydroxy vitamin D is related to indicators of overall physical fitness in healthy postmenopausal women. Menopause 2009, 16, 1093–1101. [Google Scholar] [CrossRef]
- Dubnov-Raz, G.; Livne, N.; Raz, R.; Rogel, D.; Cohen, A.H.; Constantini, N.W. Vitamin D concentrations and physical performance in competitive adolescent swimmers. Pediatr. Exerc. Sci. 2014, 26, 64–70. [Google Scholar] [CrossRef]
- Cannell, J.J.; Hollis, B.W.; Sorenson, M.B.; Taft, T.N.; Anderson, J.J. Athletic performance and Vitamin D. Med. Sci. Sports Exerc. 2009, 41, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Grieshober, J.A.; Mehran, N.; Photopolous, C.; Fishman, M.; Lombardo, S.J.; Kharrazi, F.D. Vitamin D insufficiency among professional basketball players: A relationship to fracture risk and athletic performance. Orthop. J. Sports Med. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.; Meyer, T.; Fullagar, H.H.; Skorski, S.; Pfeiffer, M.; Kellmann, M.; Ferrauti, A.; Hecksteden, A. Individual patterns in blood-borne indicators of fatigue—Trait or chance. J. Strength Cond. Res. 2017, 31, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Hecksteden, A.; Skorski, S.; Schwindling, S.; Hammes, D.; Pfeiffer, M.; Kellmann, M.; Ferrauti, A.; Meyer, T. Blood-borne markers of fatigue in competitive athletes–results from simulated training camps. PLoS. ONE 2016, 11, e0148810. [Google Scholar] [CrossRef]
- Tanner, J.; Healy, M.; Goldstein, H.; Cameron, N. Assessment of Skeletal Maturity and Prediction of Adult Height: Tw3 Method, 3rd ed.; W. B. Saunders Ltd.: London, NY, USA, 2001. [Google Scholar]
- Jung, H.; Seo, M.W.; Lee, S.; Kim, S.; Song, J. Vitamin D3 supplementation reduces the symptoms of upper respiratory tract infection during winter training in vitamin D insufficient taekwondo athletes: A randomized controlled trial. Int. J. Environ. Res. Public Health 2018, 15, 2003. [Google Scholar] [CrossRef]
- Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin, D Calcium. The national academies collection: Reports funded by national institutes of health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US) National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar]
- American College of Sports Medicine. Acsm’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Seo, M.W.; Lee, J.M.; Jung, H.C.; Jung, S.W.; Song, J.K. Effects of Various Work-to-rest Ratios during High-intensity Interval Training on Athletic Performance in Adolescents. Int. J. Sports Med. 2019, 40, 503–510. [Google Scholar] [CrossRef] [PubMed]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Lovell, G. Vitamin D status of females in an elite gymnastics program. Clin. J. Sport Med. 2008, 18, 159–161. [Google Scholar] [CrossRef]
- Willis, K.S.; Peterson, N.J.; Larson-Meyer, D.E. Should we be concerned about the vitamin D status of athletes? Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 204–224. [Google Scholar] [CrossRef]
- Ogan, D.; Pritchett, K. Vitamin D and the athlete: Risks, recommendations, and benefits. Nutrients 2013, 5, 1856–1868. [Google Scholar] [CrossRef]
- Forney, L.A.; Earnest, C.P.; Henagan, T.M.; Johnson, L.E.; Castleberry, T.J.; Stewart, L.K. Vitamin D status, body composition, and fitness measures in college-aged students. J. Strength Cond. Res. 2014, 28, 814–824. [Google Scholar] [CrossRef]
- Gilsanz, V.; Kremer, A.; Mo, A.O.; Wren, T.A.; Kremer, R. Vitamin D status and its relation to muscle mass and muscle fat in young women. J. Clin. Endocrinol. Metab. 2010, 95, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Gunton, J.E.; Girgis, C.M. Vitamin D and muscle. Bone Rep. 2018, 8, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Thiering, E.; Brüske, I.; Kratzsch, J.; Hofbauer, L.; Berdel, D.; Von Berg, A.; Lehmann, I.; Hoffmann, B.; Bauer, C.; Koletzko, S. Associations between serum 25-hydroxy vitamin D and bone turnover markers in a population based sample of german children. Sci. Rep. 2015, 5, 18138. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, P.B.; Joseph, C.; Angioi, M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J. Sci. Med. Sport 2015, 18, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Das, G.; Roberts, S.; Berry, J.; Adams, J.; Rawer, R.; Mughal, M. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J. Clin. Endocrinol. Metab. 2010, 95, 4643–4651. [Google Scholar] [CrossRef] [PubMed]
- Farrokhyar, F.; Sivakumar, G.; Savage, K.; Koziarz, A.; Jamshidi, S.; Ayeni, O.R.; Peterson, D.; Bhandari, M. Effects of vitamin D supplementation on serum 25-hydroxy vitamin D concentrations and physical performance in athletes: A systematic review and meta-analysis of randomized controlled trials. Sports Med. 2017, 47, 2323–2339. [Google Scholar] [CrossRef]
- Książek, A.; Zagrodna, A.; Dziubek, W.; Pietraszewski, B.; Ochmann, B.; Słowińska-Lisowska, M. 25 (OH) D3 levels relative to muscle strength and maximum oxygen uptake in athletes. J. Hum. Kinet. 2016, 50, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, J.; Gracia-Marco, L.; Huybrechts, I.; Breidenassel, C.; Ferrari, M.; Gottrand, F.; Dallongeville, J.; Sioen, I.; Gutierrez, A.; Kersting, M. Cardiorespiratory fitness in males, and upper limbs muscular strength in females, are positively related with 25-hydroxy vitamin D plasma concentrations in european adolescents: The helena study. QJM Int. J. Med. 2013, 106, 809–821. [Google Scholar] [CrossRef]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Margioris, A.N. Vitamin D and exercise performance in professional soccer players. PLoS ONE 2014, 9, e101659. [Google Scholar] [CrossRef]
- Bermon, S.; Garnier, P.Y. Serum androgen levels and their relation to performance in track and field: Mass spectrometry results from 2127 observations in male and female elite athletes. Br. J. Sports Med. 2017, 51, 1309–1314. [Google Scholar] [CrossRef]
- Cadegiani, F.A.; Kater, C.E. Hormonal aspects of overtraining syndrome: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in sports and exercise: Tracking health, performance, and recovery in athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [PubMed]
- Dahlquist, D.T.; Dieter, B.P.; Koehle, M.S. Plausible ergogenic effects of vitamin D on athletic performance and recovery. J. Int. Soc. Sports Nutr. 2015, 12, 33. [Google Scholar] [CrossRef] [PubMed]
Vitamin D Status | η2p | |||
---|---|---|---|---|
Deficient | Insufficient | Adequate | ||
Sample (%) | 5 (10.6%) | 30 (63.8%) | 12 (25.5%) | |
25(OH)D (nmol/L) (95% CI) | 24.7 ± 5.02 (19.9, 29.6) | 39.3 ± 4.86 (37.3, 41.2) | 63.1 ± 6.60 (60.5, 66.7) | 0.85 |
Age (year) (95% CI) | 16.2 ± 1.10 (15.9, 17.3) | 16.8 ± 0.70 (16.5, 17.1) | 16.4 ± 0.87 (15.9, 16.9) | 0.08 |
Bone age (year) (95% CI) | 16.4 ± 1.09 (15.5, 17.2) | 16.7 ± 0.77 (16.4, 17.1) | 16.2 ± 1.24 (15.6, 16.7) | 0.19 |
Height (cm) (95% CI) | 173.7 ± 5.62 (168.3, 179.1) | 176.0 ± 5.19 (173.8, 178.2) | 173.8 ± 7.86 (170.3, 177.3) | 0.49 |
Weight (kg) (95% CI) | 61.1 ± 5.95 (51.7, 70.6) | 67.7 ± 11.72 (63.8, 71.5) | 64.6 ± 10.46 (58.5, 70.7) | 0.37 |
TE (months) (95% CI) | 51.0 ± 10.75 (41.8, 60.2) | 55.9 ± 10.54 (52.1, 59.7) | 48.1 ± 9.20 (42.1, 54.0) | 0.08 |
%BF (%) (95% CI) | 11.4 ± 2.01 (8.2, 14.7) | 13.3 ± 3.91 (12.0, 14.7) | 12.6 ± 3.33 (10.5, 14.7) | 0.53 |
LBM (kg) (95% CI) | 52.0 ± 5.36 (45.4, 58.7) | 55.9 ± 7.45 (53.2, 58.6) | 53.9 ± 7.77 (49.6, 58.2) | 0.03 |
FM (kg) (95% CI) | 6.9 ± 1.15 (3.4, 10.4) | 9.3 ± 4.61 (7.8, 10.7) | 8.1 ± 1.92 (5.8, 10.3) | 0.04 |
WBMD (g/cm2) (95% CI) | 1.2 ± 0.09 (1.1, 1.2) | 1.2 ± 0.09 (1.2, 1.3) | 1.2 ± 0.10 (1.2, 1.3) | 0.06 |
HBMD (g/cm2) (95% CI) | 1.1 ± 0.10 (1.0, 1.1) | 1.2 ± 0.11 (1.1, 1.2) | 1.2 ± 0.11 (1.1, 1.3) | 0.08 |
LBMD (g/cm2) (95% CI) | 1.0 ± 0.13 (0.9, 1.1) | 1.1 ± 0.12 (1.0, 1.1) | 1.0 ± 0.15 (1.0, 1.1) | 0.03 |
FBMD (g/cm2) (95% CI) | 0.6 ± 0.07 (0.5, 0.6) | 0.6 ± 0.06 (0.6, 0.6) | 0.6 ± 0.04 (0.6, 0.6) | 0.03 |
Energy intake (kcal) (95% CI) | 2078.9 ± 209.89 (1781.9, 2375.8) | 2318.7 ± 377.79 (2197.4, 2439.9) | 2298.8 ± 204.67 (2107.1, 2490.5) | 0.05 |
Carbohydrate (g) (95% CI) | 303.1 ± 54.42 (267.0, 339.2) | 317.7 ± 41.94 (303.0, 332.5) | 307.0 ± 26.40 (283.7, 330.3) | 0.02 |
Lipid (g) (95% CI) | 60.8 ± 12.02 (45.1, 76.4) | 75.3 ± 19.36 (68.9, 81.7) | 78.5 ± 12.85 (68.4, 88.6) | 0.08 |
Protein (g) (95% CI) | 77.1 ± 6.09 (63.0, 91.2) | 91.6 ± 18.13 (85.9, 97.4) | 91.0 ± 9.85 (81.9, 100.1) | 0.08 |
Vitamin D (IU) (95% CI) | 104.0 ± 16.46 (57.6, 152.0) | 132.0 ± 61.17 (113.2, 151.6) | 144.0 ± 31.79 (112.0, 173.6) | 0.04 |
Vitamin D Status | η2p | |||
---|---|---|---|---|
Deficient | Insufficient | Adequate | ||
VO2max (ml·kg-1·min−1) (95% CI) | 64.2 ± 1.39 (58.8, 69.6) | 64.0 ± 6.94 (61.8, 66.2) | 64.2 ± 3.90 (60.7, 67.7) | 0.00 |
PPO (watts) (95% CI) | 620.8 ± 75.76 (524.8, 716.9) | 715.4 ± 117.85 (676.2, 754.6) | 689.9 ± 81.81 (627.9, 751.9) | 0.07 |
RPPO (W/kg) (95% CI) | 10.1 ± 0.59 (9.4, 10.8) | 10.6 ± 0.88 (10.3, 10.9) | 10.7 ± 0.48 (10.2, 11.1) | 0.04 |
MP (watts) (95% CI) | 455.1 ± 38.93 (399.7, 510.4) | 502.1 ± 60.69 (479.5, 524.6) | 502.5 ± 69.37 (466.7, 538.2) | 0.06 |
RMPO (W/kg) (95% CI) | 7.5 ± 0.39 (6.9, 8.1) | 7.5 ± 0.76 (7.3, 7.8) | 7.8 ± 0.42 (7.4, 8.2) | 0.03 |
REPT (Nm/kg) (95% CI) | 347.0 ± 46.76 (298.8, 395.2) | 327.3 ± 50.26 (307.6, 346.9) | 316.6 ± 63.15 (285.5, 347.7) | 0.03 |
RFPT (Nm/kg) (95% CI) | 170.6 ± 24.68 (148.3, 192.9) | 188.5 ± 22.53 (179.4, 197.6) | 184.0 ± 29.98 (169.6, 198.4) | 0.05 |
LEPT (Nm/kg) (95% CI) | 347.0 ± 52.98 (309.8, 384.2) | 339.0 ± 39.94 (323.8, 354.2) | 324.3 ± 39.76 (300.3, 348.3) | 0.03 |
LFPT (Nm/kg) (95% CI) | 182.6 ± 40.27 (159.3, 205.9) | 181.1 ± 23.98 (171.6, 190.6) | 195.3 ± 23.64 (180.2, 210.3) | 0.06 |
FR (%) (95% CI) | 81.7 ± 5.61 (75.6, 87.9) | 87.9 ± 7.17 (85.4, 90.4) | 87.3 ± 6.34 (83.4, 91.3) | 0.07 |
Vertical jump (cm) (95% CI) | 53.8 ± 6.02 (49.5, 58.1) | 52.2 ± 5.01 (50.4, 53.9) | 54.0 ± 3.30 (51.2, 56.8) | 0.03 |
Agility T-test (sec) (95% CI) | 10.5 ± 0.47 (10.1, 10.8) | 10.5 ± 0.40 (10.3, 10.6) | 10.5 ± 0.32 (10.3, 10.7) | 0.00 |
Vitamin D Status | η2p | |||
---|---|---|---|---|
Deficient | Insufficient | Adequate | ||
FT (pmol/L) (95% CI) | 48.3 ± 15.03 (38.2, 58.5) | 43.5 ± 11.40 (39.4, 47.7) | 41.0 ± 9.08 (34.4, 47.5) | 0.03 |
Cortisol (μg/dL) (95% CI) | 10.7 ± 3.04 (8.8, 12.6) | 8.9 ± 2.19 (8.1, 9.7) | 9.1 ± 1.39 (7.9, 10.3) | 0.06 |
CK (U/L) (95% CI) | 397.8 ± 325.46 (196.8, 598.8) | 375.9 ± 210.93 (293.9, 457.9) | 326.1 ± 207.54 (196.4, 455.8) | 0.01 |
Urea (mg/dL) (95% CI) | 26.1 ± 7.47 (19.7, 32.5) | 30.7 ± 7.72 (28.0, 33.3) | 33.1 ± 5.07 (28.9, 37.2) | 0.07 |
Pearson | Partial Correlation | ||
---|---|---|---|
Model 1 | Model 2 | ||
r | r | r | |
VO2max (ml·kg-1·min-1) | 0.03 | 0.01 | 0.03 |
PPO (watts) | 0.05 | 0.10 | 0.21 |
RPPO (W/kg) | 0.13 | 0.12 | 0.20 |
MP (watts) | 0.16 | 0.21 | 0.36 * |
RMPO (W/kg) | 0.21 | 0.12 | 0.33 * |
REPT (Nm/kg) | −0.13 | −0.06 | −0.10 |
RFPT (Nm/kg) | 0.02 | 0.08 | 0.04 |
LEPT (Nm/kg) | −0.10 | −0.04 | 0.06 |
LFPT (Nm/kg) | 0.13 | 0.14 | 0.09 |
FR (%) | 0.13 | 0.12 | 0.24 |
Vertical jump (cm) | 0.15 | 0.21 | 0.21 |
Agility T-test (sec) | −0.03 | −0.13 | −0.11 |
Free testosterone (pmol/L) | −0.19 | −0.10 | −0.16 |
Cortisol (μg/dL) | −0.06 | −0.04 | −0.03 |
Creatine Kinase (U/L) | −0.05 | −0.08 | −0.11 |
Urea (mg/dL) | 0.27 | 0.28 | 0.30 |
Model 1 | Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | ΔR2 | β | 95% CI | ΔR2 | β | 95% CI | ΔR2 | |
VO2max (ml∙kg−1∙min−1) | 0.03 | −0.12, 0.14 | 0.00 | 0.01 | −0.13, 0.14 | 0.00 | −0.08 | −0.08, 0.10 | 0.00 |
PPO (watts) | 0.05 | −1.98, 2.82 | 0.00 | 0.10 | −1.65, 3.19 | 0.01 | 0.09 | −0.35, 1.71 | 0.01 |
RPPO (W/kg) | 0.13 | −0.01, 0.03 | 0.02 | 0.12 | –0.01, 0.03 | 0.01 | 0.16 | 0.01, 0.02 | 0.02 |
MP (watts) | 0.16 | −0.61, 2.10 | 0.03 | 0.21 | −0.41, 2.32 | 0.04 | 0.18 | 0.13, 1.54 | 0.03 |
RMPO (W/kg) | 0.21 | 0.00, 0.03 | 0.05 | 0.20 | −0.01, 0.02 | 0.04 | 0.23 | 0.00, 0.02 | 0.05 |
REPT (Nm/kg) | −0.13 | −1.67, 0.08 | 0.02 | −0.06 | −1.34, 0.90 | 0.00 | −0.08 | −1.37, 0.72 | 0.01 |
RFPT (Nm/kg) | 0.02 | −0.52, 0.58 | 0.00 | 0.08 | −0.39, 0.69 | 0.01 | 0.03 | −0.44, 0.56 | 0.00 |
LEPT (Nm/kg) | −0.10 | −1.20, 0.61 | 0.01 | −0.03 | −0.99, 0.79 | 0.00 | −0.06 | −1.07, 0.72 | 0.00 |
LFPT (Nm/kg) | 0.13 | −0.33, 0.82 | 0.02 | 0.15 | −0.31, 0.87 | 0.02 | 0.08 | −0.42, 0.73 | 0.01 |
FR (%) | 0.13 | −0.09, 0.22 | 0.02 | 0.12 | −0.10, 0.22 | 0.01 | 0.23 | −0.04, 0.27 | 0.05 |
Vertical jump (cm) | 0.14 | −0.05, 0.15 | 0.02 | 0.21 | −0.03, 0.17 | 0.04 | 0.20 | −0.04, 0.17 | 0.04 |
Agility T-test (sec) | −0.03 | −0.01, 0.01 | 0.00 | −0.12 | −0.01, 0.00 | 0.01 | −0.10 | −0.01, 0.01 | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, M.-W.; Song, J.K.; Jung, H.C.; Kim, S.-W.; Kim, J.-H.; Lee, J.-M. The Associations of Vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 3422. https://doi.org/10.3390/ijerph16183422
Seo M-W, Song JK, Jung HC, Kim S-W, Kim J-H, Lee J-M. The Associations of Vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2019; 16(18):3422. https://doi.org/10.3390/ijerph16183422
Chicago/Turabian StyleSeo, Myong-Won, Jong Kook Song, Hyun Chul Jung, Sung-Woo Kim, Jung-Hyun Kim, and Jung-Min Lee. 2019. "The Associations of Vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 16, no. 18: 3422. https://doi.org/10.3390/ijerph16183422
APA StyleSeo, M. -W., Song, J. K., Jung, H. C., Kim, S. -W., Kim, J. -H., & Lee, J. -M. (2019). The Associations of Vitamin D Status with Athletic Performance and Blood-borne Markers in Adolescent Athletes: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 16(18), 3422. https://doi.org/10.3390/ijerph16183422