Contextual Factors Associated with Burnout among Chinese Primary Care Providers: A Multilevel Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Units and Participants
2.2. Measurement of Burnout
2.3. Measurement of Individual-Level and Institution-Level Variables
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Prevalence of Burnout
3.3. Factors Associated with Burnout Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Z. Launch of the health-care reform plan in China. Lancet 2009, 373, 1322–1324. [Google Scholar] [CrossRef]
- National Heath Commission. China Health Statistical Yearbook 2018; Peking Union Medical College Press: Beijing, China, 2018. [Google Scholar]
- Li, H.; Liu, K.; Gu, J.; Zhang, Y.; Qiao, Y.; Sun, X. The development and impact of primary health care in China from 1949 to 2015: A focused review. Int. J. Health Plann. Manag. 2017, 32, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.C.; Hsiao, W.C.; Chen, W.; Hu, S.; Ma, J.; Maynard, A. Early appraisal of China’s huge and complex health-care reforms. Lancet 2012, 379, 833–842. [Google Scholar] [CrossRef]
- Freudenberger, H. Staff burnout. J. Soc. Issues 1974, 30, 159–165. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Maslach Burnout Inventory, 3rd ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Maslach, C.; Schaufeli, W.B.; Leiter, M.P. Job burnout. Annu. Rev. Psychol. 2001, 52, 397–422. [Google Scholar] [CrossRef] [PubMed]
- Rotenstein, L.S.; Torre, M.; Ramos, M.A.; Rosales, R.C.; Guille, C.; Sen, S.; Mata, D.A. Prevalence of Burnout Among Physicians: A Systematic Review. JAMA 2018, 320, 1131–1150. [Google Scholar] [CrossRef]
- Lo, D.; Wu, F.; Chan, M.; Chu, R.; Li, D. A systematic review of burnout among doctors in China: A cultural perspective. Asia Pac. Fam. Med. 2018, 17, 3. [Google Scholar] [CrossRef]
- West, C.P.; Tan, A.D.; Shanafelt, T.D. Association of resident fatigue and distress with occupational blood and body fluid exposures and motor vehicle incidents. Mayo Clin. Proc. 2012, 87, 1138–1144. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Balch, C.M.; Dyrbye, L.; Bechamps, G.; Russell, T.; Satele, D.; Rummans, T.; Swartz, K.; Novotny, P.J.; Sloan, J. Special report: Suicidal ideation among American surgeons. Arch. Surg. 2011, 146, 54–62. [Google Scholar] [CrossRef]
- Neuberg, M.; Zeleznik, D.; Mestrovic, T.; Ribic, R.; Kozina, G. Is the burnout syndrome associated with elder mistreatment in nursing homes: Results of a cross-sectional study among nurses. Arhiv za Higijenu Rada i Toksikologiju 2017, 68, 190–197. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Balch, C.M.; Bechamps, G.; Russell, T.; Dyrbye, L.; Satele, D.; Collicott, P.; Novotny, P.J.; Sloan, J.; Freischlag, J. Burnout and medical errors among American surgeons. Ann. Surg. 2010, 251, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- West, C.P.; Tan, A.D.; Habermann, T.M.; Sloan, J.A.; Shanafelt, T.D. Association of resident fatigue and distress with perceived medical errors. JAMA 2009, 302, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Cheng, Y.; Hu, X.; Yuan, P.; Hao, T.; Shi, Y. Workload, burnout, and medical mistakes among physicians in China: A cross-sectional study. Biosci. Trends 2016, 10, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, C.P.; Dyrbye, L.N.; Shanafelt, T.D. Physician burnout: Contributors, consequences and solutions. J. Int. Med. 2018, 283, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, G.; Theorell, T.; Grape, T.; Hammarstrom, A.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Traskman-Bendz, L.; Hall, C. A systematic review including meta-analysis of work environment and burnout symptoms. BMC Public Health 2017, 17, 264. [Google Scholar] [CrossRef] [PubMed]
- Bobbio, A.; Bellan, M.; Manganelli, A.M. Empowering leadership, perceived organizational support, trust, and job burnout for nurses: A study in an Italian general hospital. Health Care Manag. Rev. 2012, 37, 77–87. [Google Scholar] [CrossRef]
- Zarei, E.; Ahmadi, F.; Sial, M.S.; Hwang, J.; Thu, P.A.; Usman, S.M. Prevalence of Burnout among Primary Health Care Staff and Its Predictors: A Study in Iran. Int. J. Environ. Res. Public Health 2019, 16, 2249. [Google Scholar] [CrossRef]
- Adam, S.; Mohos, A.; Kalabay, L.; Torzsa, P. Potential correlates of burnout among general practitioners and residents in Hungary: The significant role of gender, age, dependant care and experience. BMC Fam. Pract. 2018, 19, 193. [Google Scholar] [CrossRef]
- Bliese, P.D.; Jex, S.M. Incorporating a multilevel perspective into occupational stress research: Theoretical, methodological, and practical implications. J. Occup. Health Psychol. 2002, 7, 265–276. [Google Scholar] [CrossRef]
- Leineweber, C.; Westerlund, H.; Chungkham, H.S.; Lindqvist, R.; Runesdotter, S.; Tishelman, C. Nurses’ practice environment and work-family conflict in relation to burn out: A multilevel modelling approach. PLoS ONE 2014, 9, e96991. [Google Scholar] [CrossRef]
- Van Bogaert, P.; Clarke, S.; Wouters, K.; Franck, E.; Willems, R.; Mondelaers, M. Impacts of unit-level nurse practice environment, workload and burnout on nurse-reported outcomes in psychiatric hospitals: A multilevel modelling approach. Int. J. Nurs. Stud. 2013, 50, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Bruyneel, L.; Sermeus, W.; Van den Heede, K.; Matawie, K.; Aiken, L.; Lesaffre, E. Group-level impact of work environment dimensions on burnout experiences among nurses: A multivariate multilevel probit model. Int. J. Nurs. Stud. 2013, 50, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Huang, D.S.; Guan, P. Job burnout among critical care nurses from 14 adult intensive care units in Northeastern China: A cross-sectional survey. BMJ Open 2014, 4, e004813. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, L.; Wang, Y.; Gao, F.; Zhao, X.; Wang, L. Factors associated with burnout among Chinese hospital doctors: A cross-sectional study. BMC Public Health 2013, 13, 786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, Z.; Dai, J.; Zhang, L.; Huang, Y.; Chen, B. Physician burnout and its associated factors: A cross-sectional study in Shanghai. J. Occup. Health 2014, 56, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Shi, K.; Luo, Z.X.; Li, L.; Yang, Y. An investigation on job burnout of doctors and nurses. Chin. J. Clin. Psychol. 2003, 11, 170–172. [Google Scholar]
- Kim, J.J.; Brookman-Frazee, L.; Gellatly, R.; Stadnick, N.; Barnett, M.L.; Lau, A.S. Predictors of Burnout among Community Therapists in the Sustainment Phase of a System-Driven Implementation of Multiple Evidence-Based Practices in Children’s Mental Health. Prof. Psychol. Res. Pract. 2018, 49, 131–142. [Google Scholar] [CrossRef]
- Stadnick, N.A.; Lau, A.S.; Barnett, M.; Regan, J.; Aarons, G.A.; Brookman-Frazee, L. Comparing Agency Leader and Therapist Perspectives on Evidence-Based Practices: Associations with Individual and Organizational Factors in a Mental Health System-Driven Implementation Effort. Adm. Policy Ment. Health 2018, 45, 447–461. [Google Scholar] [CrossRef]
- Kreft, I.G.; de Leeuw, J.; Aiken, L.S. The Effect of Different Forms of Centering in Hierarchical Linear Models. Multivar. Behav. Res. 1995, 30, 1–21. [Google Scholar] [CrossRef]
- Park, S.; Lake, E.T. Multilevel modeling of a clustered continuous outcome: Nurses’ work hours and burnout. Nurs. Res. 2005, 54, 406–413. [Google Scholar] [CrossRef]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Dugani, S.; Afari, H.; Hirschhorn, L.R.; Ratcliffe, H.; Veillard, J.; Martin, G.; Lagomarsino, G.; Basu, L.; Bitton, A. Prevalence and factors associated with burnout among frontline primary health care providers in low- and middle-income countries: A systematic review. Gates Open Res. 2018, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Soler, J.K.; Yaman, H.; Esteva, M.; Dobbs, F.; Asenova, R.S.; Katic, M.; Ozvacic, Z.; Desgranges, J.P.; Moreau, A.; Lionis, C. Burnout in European family doctors: The EGPRN study. Fam. Pract. 2008, 25, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.J.; Stewart, M.; Brown, J.B. Stress, burnout, and strategies for reducing them: what’s the situation among Canadian family physicians? Can. Fam. Physician Med. Fam. Can. 2008, 54, 234–235. [Google Scholar] [PubMed]
- Calgan, Z.; Aslan, D.; Yegenoglu, S. Community pharmacists’ burnout levels and related factors: An example from Turkey. Int. J. Clin. Pharm. 2011, 33, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, M.C.; Bester, C.L.; Van den Berg, H.; Van Rensburg, H.C.J. A study of predictors and levels of burnout: The case of professional nurses in primary health facilities in the free stata1. S. Afr. J. Econ. 2008, 76. [Google Scholar] [CrossRef]
- Cao, X.; Chen, L.; Tian, L.; Diao, Y. The effect of perceived organisational support on burnout among community health nurses in China: The mediating role of professional self-concept. J. Nurs. Manag. 2016, 24, E77–E86. [Google Scholar] [CrossRef] [PubMed]
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The job demands-resources model of burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef]
- Portoghese, I.; Galletta, M.; Burdorf, A.; Cocco, P.; D’Aloja, E.; Campagna, M. Role Stress and Emotional Exhaustion Among Health Care Workers: The Buffering Effect of Supportive Coworker Climate in a Multilevel Perspective. J. Occup. Environ. Med. 2017, 59, e187–e193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Li, L.; Hesketh, T. Health system reform in rural China: Voices of healthworkers and service-users. Social Sci. Med. 2014, 117, 134–141. [Google Scholar] [CrossRef]
- Benevides-Pereira, A.M.; Das Neves Alves, R. A study on burnout syndrome in healthcare providers to people living with HIV. AIDS Care 2007, 19, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.X.; Liu, L.T.; Zhao, F.J.; Yao, Y.Y.; Gao, Y.X.; Wang, G.R. Factors Related to Job Burnout among Community Nurses in Changchun, China. J. Nurs. Res. 2015, 23, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Blau, G.; Tatum, D.S.; Ward Goldberg, C. Exploring correlates of burnout dimensions in a sample of psychiatric rehabilitation practitioners: A cross-sectional study. Psychiatr. Rehabil. J. 2013, 36, 166–172. [Google Scholar] [CrossRef] [PubMed]
Covariate | n (%) |
---|---|
Demographic characteristics | |
Gender | |
Male | 332 (34.9) |
Female | 619 (65.1) |
Age group (years) | |
<30 | 153 (16.1) |
30−39 | 401 (42.2) |
≥40 | 397 (41.7) |
Education | |
High-school graduate or blow | 178 (18.7) |
Some college | 396 (41.6) |
Bachelor’s degree or above | 377 (39.6) |
Marital status | |
Married | 861 (90.5) |
Single/divorced/widowed | 90 (9.5) |
Job characteristics | |
Employment type | |
Temporary employee | 717 (75.4) |
Long-term employee | 234 (24.6) |
Years of experience | |
<5 | 203 (21.4) |
5−10 | 217 (22.8) |
11−20 | 232 (24.4) |
≥21 | 299 (31.4) |
Work role | |
Prevention | 260 (27.3) |
Clinical | 428 (45.0) |
Clinical and prevention | 263 (27.7) |
Monthly salary | |
<4000 | 422 (44.4) |
≥4000 | 529 (55.6) |
Perceived workload, mean (SD) | 3.7 (0.7) |
Perceived work support, mean (SD) | 3.8 (1.1) |
Perceived work autonomy, mean (SD) | 3.3 (1.1) |
Score Mean ± SD | Degree | |||
---|---|---|---|---|
Low n (%) | Moderate n (%) | High n (%) | ||
EE | 21.87 ± 10.71 | 323 (33.96) | 313 (32.91) | 315 (33.12) |
DP | 4.75 ± 5.10 | 679 (71.40) | 188 (19.77) | 84 (8.83) |
Reduced PA | 33.14 ± 10.81 | 362 (38.07) | 195 (20.50) | 394 (41.43) |
Variables | Model 1 Coefficient (95% CI) | Model 2 Coefficient (95% CI) | ||||
---|---|---|---|---|---|---|
EE | DP | PA | EE | DP | PA | |
Individual level | ||||||
Gender | ||||||
Male | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Female | −1.52 (−2.85, −0.20) * | −1.17 (−1.86, −0.48) ** | 0.87 (−0.51, 2.26) | −1.53 (−2.86, −0.20) * | −1.20 (−1.90, −0.51) ** | 0.99 (−0.40, 2.37) |
Age group (years) | ||||||
<30 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
30−39 | 0.27 (−1.93, 2.48) | 0.12 (−1.03, 1.27) | −0.96 (−3.27, 1.35) | 0.15 (−2.05, 2.36) | 0.03 (−1.13, 1.18) | −0.71 (−3.01, 1.59) |
≥40 | −0.10 (−2.75, 2.56) | −0.25 (−1.64, 1.14) | −0.78 (−3.55, 2.00) | −0.31 (−2.96, 2.35) | −0.31 (−1.71, 1.08) | −0.68 (−3.45, 2.10) |
Education | ||||||
High-school graduate or blow | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Some college | 2.28 (0.49, 4.06) * | 0.02 (−0.91, 0.95) | 1.19 (−0.68, 3.06) | 2.59 (0.80, 4.38) ** | 0.03 (−0.90, 0.97) | 1.15 (−0.71, 3.02) |
Bachelor’s degree or above | 2.77 (0.87, 4.67) ** | −0.26 (−1.25, 0.72) | 1.25 (−0.74, 3.24) | 3.12 (1.21, 5.03) ** | −0.21 (−1.21, 0.79) | 1.08 (−0.91, 3.08) |
Marital status | ||||||
Single/divorced/widowed | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Married | −0.51 (−2.84, 1.82) | 0.28 (−0.94, 1.49) | −0.50 (−2.94, 1.94) | −0.43 (−2.77, 1.90) | 0.35 (−0.87, 1.58) | -0.97 (−3.40, 1.47) |
Employment type | ||||||
Temporary employee | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Long-term employee | 0.84 (−1.11, 2.79) | 0.66 (−0.34, 1.65) | −1.98 (−4.03, 0.07) | 1.26 (−0.77, 3.30) | 0.60 (−0.46, 1.66) | −1.78 (−3.89, 0.33) |
Years of experience (years) | ||||||
<5 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
5−10 | 0.31 (−1.71, 2.33) | 0.53 (−0.53, 1.58) | −2.10 (−4.21, 0.01) | 0.41 (−1.61, 2.42) | 0.59 (−0.47, 1.64) | −2.06 (−4.16, 0.04) |
11−20 | 0.55 (−1.72, 2.81) | 0.27 (−0.92, 1.45) | −1.07 (−3.44, 1.30) | 0.66 (−1.60, 2.91) | 0.32 (−0.86, 1.51) | −0.98 (−3.33, 1.38) |
≥21 | 0.10 (−2.40, 2.60) | −0.45 (−1.76, 0.86) | 0.98 (−1.64, 3.60) | 0.27 (−2.22, 2.76) | −0.40 (−1.71, 0.90) | 1.07 (−1.53, 3.66) |
Work role | ||||||
Prevention | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Clinical | 2.14 (0.56, 3.73) ** | 0.68 (−0.15, 1.50) | 1.96 (0.31, 3.62) * | 1.92 (0.34, 3.50) * | 0.57 (−0.26, 1.40) | 2.34 (0.69, 3.98) ** |
Clinical and prevention | 1.31 (−0.40, 3.02) | 0.81 (−0.08, 1.70) | 0.71 (−1.08, 2.51) | 1.22 (−0.48, 2.92) | 0.70 (−0.19, 1.59) | 0.93 (−0.84, 2.70) |
Monthly salary | ||||||
<4000 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
≥4000 | 0.31 (−1.56, 2.18) | 0.48 (−0.46, 1.42) | −1.20 (−3.17, 0.77) | 0.52 (−1.49, 2.54) | 0.38 (−0.68, 1.43) | −0.72 (−2.82, 1.37) |
Perceived workload | 5.30 (4.41, 6.18) *** | 0.12 (−0.34, 0.58) | 0.45 (−0.47, 1.37) | 5.28 (4.39, 6.16) *** | 0.10 (−0.36, 0.57) | 0.51 (−0.42, 1.43) |
Perceived work support | −1.72 (−2.43, −1.02) *** | −0.45 (−0.82, −0.08) * | 2.23 (1.49, 2.97) *** | −1.73 (−2.44, −1.03) *** | −0.46 (−0.83, −0.09) * | 2.27 (1.53, 3.01) *** |
Perceived work autonomy | −0.68 (−1.33, −0.03) * | −0.42 (−0.76, −0.08) * | 1.23 (0.55, 1.90) *** | −0.68 (−1.33, −0.03) * | −0.42 (−0.76, −0.07) * | 1.21 (0.53, 1.89) *** |
Institution level | ||||||
Workload | 6.59 (3.46, 9.72) *** | 0.20 (−1.31, 1.70) | 1.47 (−1.43, 4.38) | |||
Work support | −2.70 (−5.59, 0.20) | −0.15 (−1.54, 1.23) | 3.49 (0.81, 6.17) * | |||
Work autonomy | −0.47 (−3.74, 2.81) | −1.46 (−3.02, 0.10) | 2.46 (−0.56, 5.48) | |||
Country | ||||||
Country A | 1 (reference) | 1 (reference) | 1 (reference) | |||
Country B | −0.78 (−3.12, 1.57) | −0.63 (−1.75, 0.49) | 3.95 (1.78, 6.11) *** | |||
Country C | 1.58 (−0.81, 3.98) | −0.54 (−1.70, 0.63) | 3.38 (1.10, 5.66) ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yuan, B.; Meng, Q.; Kawachi, I. Contextual Factors Associated with Burnout among Chinese Primary Care Providers: A Multilevel Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3555. https://doi.org/10.3390/ijerph16193555
Li H, Yuan B, Meng Q, Kawachi I. Contextual Factors Associated with Burnout among Chinese Primary Care Providers: A Multilevel Analysis. International Journal of Environmental Research and Public Health. 2019; 16(19):3555. https://doi.org/10.3390/ijerph16193555
Chicago/Turabian StyleLi, Huiwen, Beibei Yuan, Qingyue Meng, and Ichiro Kawachi. 2019. "Contextual Factors Associated with Burnout among Chinese Primary Care Providers: A Multilevel Analysis" International Journal of Environmental Research and Public Health 16, no. 19: 3555. https://doi.org/10.3390/ijerph16193555
APA StyleLi, H., Yuan, B., Meng, Q., & Kawachi, I. (2019). Contextual Factors Associated with Burnout among Chinese Primary Care Providers: A Multilevel Analysis. International Journal of Environmental Research and Public Health, 16(19), 3555. https://doi.org/10.3390/ijerph16193555