Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neiva, H.; Faíl, L.; Izquierdo, M.; Marques, M.; Marinho, D. The effect of 12 weeks of water-aerobics on health status and physical fitness: An ecological approach. PLoS ONE 2018, 13, e0198391. [Google Scholar]
- Robinson, L.E.; Devor, S.T.; Buckworth, J. The effects of land vs. aquatic plyometrics on power, torque, velocity, and muscle soreness in women. J. Strength Cond. Res. 2004, 18, 84–91. [Google Scholar] [PubMed]
- Yázigi, F.; Espanha, M.; Vieira, F.; Messier, S.P.; Monteiro, C.; Veloso, A.P. The PICO project: Aquatic exercise for knee osteoarthritis in overweight and obese individuals. BMC Musculoskelet. Disord. 2013, 14, 320. [Google Scholar] [CrossRef] [PubMed]
- Marinho-Buzelli, A.; Bonnyman, A.; Verrier, M. The effects of aquatic therapy on mobility of individuals with neurological diseases: A systematic review. Clin. Rehabil. 2015, 29, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Garrido, M.; Bragada, J. Physiological adaptations to head-out aquatic exercises with different levels of body immersion. J. Strength Cond. Res. 2007, 21, 1255–1259. [Google Scholar] [PubMed]
- Costa, M.J.; Gonçalves, C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Short and long term effects of a head-out aquatic exercise program on body composition, anthropometrics and cardiovascular response of middle-aged women. Int. Sport Med. J. 2014, 15, 41–49. [Google Scholar]
- Havriluk, R. Validation of a criterion measure for swimming technique. J. Swim. Res. 1988, 4, 11–16. [Google Scholar]
- Becker, T.; Havriluk, R. Bilateral and anterior-posterior muscular imbalances in swimmers. Port. J. Sport Sci. 2006, 6, 327–328. [Google Scholar]
- Prins, J.H.; Hartung, G.H.; Merritt, D.J.; Blancq, R.J.; Goobert, D.A. Effect of aquatic exercise training in persons with poliomyelitis disability. Sports Med. Train. Rehabil. 1994, 5, 29–39. [Google Scholar] [CrossRef]
- Sanders, R.; Thow, J.; Alcock, A.; Fairweather, M.; Riach, I.; Mather, F. How can asymmetries in swimming be identified and measured? J. Swim. Res. 2012, 19, 1–15. [Google Scholar]
- Batalha, N.; Marmeleira, J.; Garrido, N.; Silva, A.J. Does a water-training macrocycle really create imbalances in swimmers’ shoulder rotator muscles? Eur. J. Sport Sci. 2015, 15, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.; Pereira, G.; Papoti, M.; Bento, P.C.; Rodacki, A. Propulsive Force Asymmetry during Tethered-Swimming. Int. J. Sports Med. 2013, 34, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Fernandes, R.J.; Marques, M.C. Quantification of upper limb kinetic asymmetries in front crawl swimming. Hum. Mov. Sci. 2015, 40, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Cruz, L.; Simão, A.; Barbosa, T.M. Cardiovascular and perceived effort in head-out water exercises: Effect of limbs’ action and resistance equipment. J. Hum. Kinet. (in press).
- Barbosa, T.M.; Sousa, V.F.; Silva, A.J.; Reis, V.M.; Marinho, D.A.; Bragada, J.A. Effects of musical cadence in the acute physiologic adaptations to head-out aquatic exercises. J. Strength Cond. Res. 2010, 24, 244–250. [Google Scholar] [CrossRef]
- Kinder, T.; See, J. Aqua Aerobics: A Scientific Approach, 1st ed.; Eddie Bowers Pub Co: Dubuque, IA, USA, 1992. [Google Scholar]
- Meeteren, J.; Roebroeck, M.E.; Stam, H.J. Test-retest reliability in isokinetic muscle strength measurements of the shoulder. J. Rehabil. Med. 2002, 34, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Harbo, T.; Brincks, J.; Andersen, H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur. J. Appl. Physiol. 2012, 112, 267–275. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Barbosa, T.M.; Marinho, D.A.; Reis, V.M.; Silva, A.J.; Bragada, J.A. Physiological assessment of head-out aquatic exercises in healthy subjects: A qualitative review. Sport Sci. Med. 2009, 8, 179–189. [Google Scholar]
- Silva, A.J.; Rouboa, A.; Moreira, A.; Reis, V.M.; Alves, F.; Vilas-Boas, J.P.; Marinho, D.A. Analysis of drafting effects in swimming using computational fluid dynamics. J. Sports Sci. Med. 2008, 7, 60–66. [Google Scholar] [PubMed]
- Santos, C.C.; Rama, L.M.; Bartolomeu, R.F.; Barbosa, T.M.; Costa, M.J. Comparison of propulsive forces between two head-out water exercise. J. Hum. Sport Exerc. in press.
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2018; pp. 249–251. [Google Scholar]
- Aquatic Exercise Association (AEA). Aquatic Fitness Professional Manual, 7th ed.; Human Kinetics: Champaign, IL, USA, 2018; pp. 7–8. [Google Scholar]
- Barbosa, T.M.; Oliveira, C.; Teixeira, G.; Costa, M.J.; Marinho, D.A.; Silva, A.J. Kinematical characterization of a basic head-out aquatic exercise during an incremental protocol. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; pp. 90–91. [Google Scholar]
- Evershed, J.; Burkett, B.; Mellifont, R. Musculoskeletal screening to detect asymmetry in swimming. Phys. Ther. Sport 2014, 15, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Carpes, F.; Mota, C.; Faria, I. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.; Thow, J.; Fairweather, M. Asymmetries in swimming: Where do they come from? J. Swim. Res. 2011, 18, 1–11. [Google Scholar]
- Costa, M.J.; Oliveira, C.; Teixeira, G.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. The influence of musical cadence into aquatic jumping jack kinematics. Sport Sci. Med. 2011, 10, 607–615. [Google Scholar]
- Oliveira, C.; Teixeira, G.; Costa, M.J.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Relationship between head-out aquatic exercise kinematics and musical cadence: Analysis of the side kick. Int. Sport Med. J. 2011, 12, 39–52. [Google Scholar]
Variables | Cadence (b·min−1) | |||
---|---|---|---|---|
105 | 120 | 135 | 150 | |
HA | ||||
PropulsiveFD (N) | 31.45 ± 12.13 | 35.81 ± 13.04 | 41.93 ± 14.06 | 47.66 ± 14.42 |
RHadd | ||||
PropulsiveFD (N) | 25.67 ± 8.15 | 32.40 ± 10.39 | 40.57 ± 12.83 | 48.42 ± 14.68 |
Variables | Cadence (b·min−1) | |||
---|---|---|---|---|
105 | 120 | 135 | 150 | |
HA | ||||
RateFD (%) | 44.77 ± 17.46 | 50.98 ± 19.33 α,* | 59.03 ± 20.95 α,**, β,* | 66.43 ± 20.47 α,**, β,* |
RHadd | ||||
RateFD (%) | 37.75 ± 17.20 | 46.69 ± 18.07 | 56.59 ± 19.32 α,** | 67.90 ± 23.64 α,**, β,** |
Variables | Cadence (b·min−1) | ||
---|---|---|---|
105–120 | 120–135 | 135–150 | |
HA | |||
ΔForce (%) | 12.40 ± 10.30 | 13.92 ± 11.05 | 10.53 ± 18.81 |
RHadd | |||
ΔForce (%) | 19.07 ± 15.77 | 18.04 ± 17.15 | 14.43 ± 19.68 |
Cadence (b·min−1) | Variable | HA | RHadd |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
105 | SI (%) | 10.49 ± 8.25 (a) | 14.11 ± 10.77 (b) |
120 | SI (%) | 10.50 ± 7.80 (a) | 14.33 ± 10.38 (b) |
135 | SI (%) | 9.23 ± 5.20 (a) | 12.71 ± 8.13 (b) |
150 | SI (%) | 11.85 ± 7.01 (b) | 15.35 ± 11.03 (b) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.C.; Rama, L.M.; Marinho, D.A.; Barbosa, T.M.; Costa, M.J. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. Int. J. Environ. Res. Public Health 2019, 16, 3784. https://doi.org/10.3390/ijerph16193784
Santos CC, Rama LM, Marinho DA, Barbosa TM, Costa MJ. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. International Journal of Environmental Research and Public Health. 2019; 16(19):3784. https://doi.org/10.3390/ijerph16193784
Chicago/Turabian StyleSantos, Catarina C., Luís M. Rama, Daniel A. Marinho, Tiago M. Barbosa, and Mário J. Costa. 2019. "Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development" International Journal of Environmental Research and Public Health 16, no. 19: 3784. https://doi.org/10.3390/ijerph16193784
APA StyleSantos, C. C., Rama, L. M., Marinho, D. A., Barbosa, T. M., & Costa, M. J. (2019). Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. International Journal of Environmental Research and Public Health, 16(19), 3784. https://doi.org/10.3390/ijerph16193784