Effect of Taekwondo Practice on Cognitive Function in Adolescents with Attention Deficit Hyperactivity Disorder
Abstract
:1. Introduction
2. Experimental Section
2.1. Population Selection: Inclusion/Exclusion Criteria
2.2. Measures
2.3. Stroop Color-Word Test
2.4. Ruff 2 and 7
2.5. TKD Intervention
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bozhilova, N.S.; Michelini, G.; Kuntsi, J.; Asherson, P. Mind wandering perspective on attention-deficit/hyperactivity disorder. Neurosci. Biobehav. Rev. 2018, 92, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Rowland, A.S.; Lesesne, C.A.; Abramowitz, A.J. The epidemiology of attention-deficit/hyperactivity disorder (ADHD): A public health view. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.C.; Pelham, W.E.; Kotkin, R.A.; Hoza, B.; Abikoff, H.B.; Abramowitz, A.; Arnold, L.E.; Cantwell, D.P.; Conners, C.K.; Del Carmen, R.; et al. Strategies for psychosocial treatment in the mta study: Rational, methods and critical issues in design and implementation. J. Abnorm. Child Psychol. 2000, 28, 483–505. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Williams, A.; Chacko, A.; Wymbs, B.T.; Fabiano, G.A.; Seymour, K.E.; Gnagy, E.M.; Chronis, A.M.; Burrows-Maclean, L.; Pelham, W.E., Jr.; Morris, T.L. Athletic performance and social behavior as predictors of peer acceptance in children diagnosed with attention-deficit/hyperactivity disorder. J. Emot. Behav. Disord. 2005, 18, 173–181. [Google Scholar] [CrossRef]
- Vazou, S.; Pesce, C.; Lakes, K.; Smiley-Oyen, A. More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 2016. [Google Scholar] [CrossRef]
- Rathore, A.; Lom, B. The effects of chronic and acute physical activity on working memory performance in healthy participants: A systematic review with meta-analysis of randomized controlled trials. Syst. Rev. 2017, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Sysoeva, O.V.; Wittmann, M.; Mierau, A.; Polikanova, I.; Strüder, H.K.; Tonevitsky, A. Physical exercise speeds up motor timing. Front. Psychol. 2013, 4, 612. [Google Scholar] [CrossRef]
- Verret, C.; Guay, M.C.; Berthiaume, C.; Gardiner, P.; Béliveau, L. A physical activity program improves behavior and cognitive functions in children with ADHD: An exploratory study. J. Atten. Disord. 2012, 16, 71–80. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions demonstrated to support the development of executive function in children aged 4 to 12 years. Science 2011, 333, 959–964. [Google Scholar] [CrossRef]
- Kim, Y. The effect of regular Taekwondo exercise on brain-derived neurotrophic factor and the Stroop test in an undergraduate student. J. Exerc. Nutr. Biochem. 2015, 19, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; So, W.Y.; Roh, H.T. The effects of taekwondo training on peripheral neuroplasticity-related growth factors, cerebral blood flow velocity, and cognitive functions in healthy children: A randomized controlled trial. Int. J. Environ. Res. Public Health 2017, 14, 454. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, K. The benefits of taekwondo training for undergraduate students: A phenomenological study. Societies 2017, 7, 27. [Google Scholar] [CrossRef]
- Cho, I.R.; Park, H.J.; Lee, T.K. The influence of taekwondo training on school-life adaptation and exercise value in the United States. J. Exerc. Rehabil. 2018, 14, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, D. Taekwondo: A Path to Excellence; YMAA Publishing Center: Wolfeboro, NH, USA, 2009. [Google Scholar]
- Cook, D. Traditional Taekwondo: Core Techniques, History and Philosophy; YMAA Publishing Center: Wolfeboro, NH, USA, 2006. [Google Scholar]
- Park, D.K.; Schein, A. Taekwondo: The Indomitable Martial Art of Korea; Invisible Cities Press: Montpelier, VT, USA, 2006. [Google Scholar]
- Parker, H.C. The ABCs of ADHD: An introduction for parents and teachers. Attention 2001, 7, 32–37. [Google Scholar]
- Lee, K.M. Taekwondo: Tradition, Philosophy and Culture; BUDO Editions: Noisy sur Ecole, France, 2005. [Google Scholar]
- Fortuny Gazquez, J.P. The POOM-SE Book; Edition Amphora: Paris, France, 1996. [Google Scholar]
- Lakes, K.D.; Hoyt, W.T. Promote self-regulation through martial arts training at school. J. Appl. Dev. Psychol. 2004, 25, 283–302. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, Y.I.; Roh, H.T. Effects of taekwondo intervention on cognitive function and academic self-efficacy in children. J. Phys. Ther. Sci. 2017, 29, 713–715. [Google Scholar] [CrossRef] [Green Version]
- Pons van Dijk, G.; Huijts, M.; Lodder, J. Cognition improvement in taekwondo novices over 40. Results from the SEKWONDO study. Front. Aging Neurosci. 2013, 5, 74. [Google Scholar] [CrossRef]
- Kim, Y.J.; Cha, E.J.; Kim, S.M.; Kang, K.D.; Han, D.H. The effects of taekwondo training on brain connectivity and body intelligence. Psychiatry Investig. 2015, 12, 335–340. [Google Scholar] [CrossRef]
- Lakes, K.D.; Bryars, T.; Sirisinahal, S.; Salim, N.; Arastoo, S.; Emmerson, N.; Kang, D.; Shim, L.; Wong, D.; Kang, C.J. The healthy for life Taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment. Health Phys. Act. 2013, 6, 181–188. [Google Scholar] [CrossRef]
- Sibley, B.A.; Etnier, J. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef]
- Frazier, T.W.; Demaree, H.A.; Youngstrom, E.A. Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology 2004, 18, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Ruff, R.M.; Niemann, H.; Allen, C.C.; Farrow, C.E.; Wylie, T. The Ruff 2 and 7 selective attention test: A neuropsychological application. Percept. Mot. Skills 1992, 75, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Earlbaum Associates: Hillside, NJ, USA, 1988. [Google Scholar]
- Morris, S.B. Estimating effect sizes from pretest-posttest-control group designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Kerns, K.; Eso, K.; Thomson, J. Investigation of a direct intervention for improving attention in young children with ADHD. Dev. Neuropsychol. 1999, 16, 273–295. [Google Scholar] [CrossRef]
- Klingberg, T.; Fernell, E.; Olesen, P.J.; Johnson, M.; Gustafsson, P.; Dahlstrom, K.; Gillberg, C.G.; Forssberg, H.; Westerberg, H. Computerized training of working memory in children with ADHD—A randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 2005, 44, 177–186. [Google Scholar] [CrossRef]
- Klingberg, T.; Forssberg, H.; Westerberg, H. Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 2002, 24, 781–791. [Google Scholar] [CrossRef]
- Olesen, P.J.; Westerberg, H.; Klingberg, T. Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 2004, 7, 75–79. [Google Scholar] [CrossRef]
- McNab, F.; Varrone, A.; Farde, L.; Jucaite, A.; Bystritsky, P.; Forssberg, H.; Klingberg, T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009, 323, 800–802. [Google Scholar] [CrossRef]
- Halperin, J.M.; Healey, D.M. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neurosci. Biobehav. Rev. 2011, 35, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.P.; Kim, H.; Shin, M.S.; Chang, H.K.; Jang, M.H.; Shin, M.C.; Lee, S.J.; Lee, H.-H.; Yoon, J.H.; Jeong, I.G.; et al. Age-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats. Neurosci. Lett. 2004, 355, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Praag, H.; Kempermann, G.; Gage, F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999, 2, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C. Exercise and brain neurotrophins. Nature 1995, 373, 109. [Google Scholar] [CrossRef] [PubMed]
- Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C. Physical activity increases mRNA for brain derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996, 726, 49–56. [Google Scholar] [CrossRef]
- Black, J.E.; Isaacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA 1990, 87, 5568–5572. [Google Scholar] [CrossRef]
- Wigal, S.B.; Nemet, D.; Swanson, J.M.; Regino, R.; Trampush, J.; Ziegler, M.G.; Cooper, D.M. Catecholamine response to exercise in children with attention deficit hyperactivity disorder. Pediatr. Res. 2003, 53, 756–761. [Google Scholar] [CrossRef]
- Tantillo, M.; Kesick, C.M.; Hynd, G.W.; Dishman, R.K. The effects of exercise on children with attention deficit hyperactivity disorder. Med. Sci. Sports Exerc. 2002, 34, 203–212. [Google Scholar] [CrossRef]
- Kim, P.S. Palgue 7, 8 of Tae Kwon do Hyung: Black Belt Requirements, 1st ed.; Ohara: Los Angeles, CA, USA, 1981. [Google Scholar]
- Shapiro, M.S. Taekwondo. Attention 2002, 9, 36–39. [Google Scholar]
- Harris, M.J. Tai-Kwan-Do in relation to ADD. J. Paediatr. Child Health 1998, 34, 484. [Google Scholar] [PubMed]
- Hernandez-Reif, M.; Field, T.M.; Thimas, E. Attention deficit hyperactivity disorder: Benefits from Tai Chi. J. Bodyw. Mov. Ther. 2001, 5, 120–123. [Google Scholar] [CrossRef]
- Cerrillo-Urbina, A.J.; García-Hermoso, A.; Sánchez-López, M.; Pardo-Guijarro, M.J.; Gómez, J.L.S.; Martínez-Vizcaíno, V. The effects of physical exercise in children with attention deficit hyperactivity disorder: A systematic review and meta-analysis of randomized control trials. Child Care Health Dev. 2015, 41, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Fedewa, A.L.; Ahn, S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Res. Q. Exerc. Sport. 2011, 82, 521–535. [Google Scholar] [CrossRef] [PubMed]
Variables | TKD Group | Control Group | TKD vs. Control Group at Baseline | Global Effect Size | ||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Statistical Significance | Pre | Post | Statistical Significance | |||
Stroop test | ||||||||
Color Block Test | 57.4 ± 9.3 (39–70) | 75.9 ± 18.2 (7–93) | <0.001 | 63.7 ± 11.5 (35–80) | 56.8 ± 11.4 (39–77) | <0.001 | 0.063 | 2.41 |
Color-Word Interference Test | 41.0 ± 7.7 (29–57) | 58.9 ± 5.9 (50–73) | <0.001 | 45.9 ± 8.4 (31–61) | 40.1 ± 10.8 (7–53) | <0.001 | 0.064 | 2.92 |
Word Test | 76.5 ± 8.5 (60–91) | 97.8 ± 10.8 (80–120) | <0.001 | 83.6 ± 11.1 (60–102) | 76.5 ± 9.5 (55–91) | <0.001 | 0.028 | 2.85 |
Interference | 8.3 ± 5.1 (−1.2–19.2) | 14.5 ± 4.0 (8.8–20.9) | <0.001 | 10.5 ± 5.3 (2.7–21.6) | 7.9 ± 4.1 (0.9–15.1) | 0.003 | 0.201 | 1.68 |
Error | 4.0 ± 2.0 (1–8) | 1.3 ± 0.7 (0–3) | <0.001 | 3.6 ± 1.5 (1–7) | 4.6 ± 2.0 (2–8) | 0.007 | 0.479 | −2.08 |
Ruff 2 and 7 test | ||||||||
Automatic detection trials (correct responses) | 138.2 ± 12.2 (107–152) | 183.6 ± 18.9 (155–220) | <0.001 | 146.3 ± 11.7 (116–163) | 140.2 ± 11.4 (110–155) | <0.001 | 0.037 | 4.28 |
Controlled search trials (correct responses) | 110.3 ± 11.4 (83–124) | 154.2 ± 18.9 (123–190) | <0.001 | 120.0 ± 19.1 (94–132) | 114.4 ± 11.2 (89–131) | 0.011 | 0.005 | 3.13 |
Total speed trials (seconds) | 288.6 ± 11.6 (253–300) | 240.3 ± 19.7 (197–267) | <0.001 | 281.6 ± 11.3 (246–293) | 288.1 ± 12.5 (251–300) | <0.001 | 0.059 | −4.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadri, A.; Slimani, M.; Bragazzi, N.L.; Tod, D.; Azaiez, F. Effect of Taekwondo Practice on Cognitive Function in Adolescents with Attention Deficit Hyperactivity Disorder. Int. J. Environ. Res. Public Health 2019, 16, 204. https://doi.org/10.3390/ijerph16020204
Kadri A, Slimani M, Bragazzi NL, Tod D, Azaiez F. Effect of Taekwondo Practice on Cognitive Function in Adolescents with Attention Deficit Hyperactivity Disorder. International Journal of Environmental Research and Public Health. 2019; 16(2):204. https://doi.org/10.3390/ijerph16020204
Chicago/Turabian StyleKadri, Abdelmotaleb, Maamer Slimani, Nicola Luigi Bragazzi, David Tod, and Fairouz Azaiez. 2019. "Effect of Taekwondo Practice on Cognitive Function in Adolescents with Attention Deficit Hyperactivity Disorder" International Journal of Environmental Research and Public Health 16, no. 2: 204. https://doi.org/10.3390/ijerph16020204
APA StyleKadri, A., Slimani, M., Bragazzi, N. L., Tod, D., & Azaiez, F. (2019). Effect of Taekwondo Practice on Cognitive Function in Adolescents with Attention Deficit Hyperactivity Disorder. International Journal of Environmental Research and Public Health, 16(2), 204. https://doi.org/10.3390/ijerph16020204