Acute and Chronic Toxicity of Carbamazepine on the Release of Chitobiase, Molting, and Reproduction in Daphnia similis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Test Organism
2.3. Experimental Design
2.3.1. Acute Exposure
2.3.2 Chronic Exposure
2.4. CBZ Quantification
2.5. Measurement of Chitobiase Activity
2.6. Statistical Analysis
3. Results
3.1. Acute Toxicity
3.1.1 Acute Toxicity of CBZ on the Molting in D. similis
3.1.2. Acute Toxicity of CBZ on the Chitobiase in D. similis
3.2. Chronic Toxicity
3.2.1. Survival and Molting
3.2.2. Age and Body Size of First Brood
3.2.3. Fecundity
4. Discussion
4.1. Effect of CBZ on the Survival and Molting in D. Similis
4.2. Toxicity of CBZ on the Release of Chitobiase in D. Similis
4.3. Chronic Toxicity of CBZ on the Reproduction in D. similis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Ferrer, I.; Thurman, E.M. Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1259, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 2, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G. The Matthew Effect and widely prescribed pharmaceuticals lacking environmental monitoring: Case study of an exposure-assessment vulnerability. Sci. Total Environ. 2014, 466, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zha, J.; Liang, X.; Li, J.; Wang, Z. Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea. Aquat. Toxicol. 2014, 155, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Paz, A.; Tadmor, G.; Malchi, T.; Blotevogel, J.; Borch, T.; Polubesova, T.; Chefetz, B. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake. Chemosphere 2016, 160, 22–29. [Google Scholar] [CrossRef]
- Pires, A.; Almeida, A.; Correia, J.; Calisto, V.; Schneider, R.J.; Esteves, V.I.; Soares, A.M.; Figueira, E.; Freitas, R. Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana. Chemosphere 2016, 146, 565–573. [Google Scholar] [CrossRef]
- Zhang, Y.; Geissen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 8, 1151–1161. [Google Scholar] [CrossRef]
- Yan, S.; Wang, M.; Zha, J.; Zhu, L.; Li, W.; Luo, Q.; Sun, J.; Wang, Z. Environmentally relevant concentrations of carbamazepine caused endocrine-disrupting effects on nontarget organisms, Chinese Rare Minnows (Gobiocypris rarus). Environ. Sci. Technol. 2018, 2, 886–894. [Google Scholar] [CrossRef]
- Zhou, X.F.; Dai, C.M.; Zhang, Y.L.; Surampalli, R.Y.; Zhang, T.C. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China. Environ. Monit. Assess. 2011, 1, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Liu, J.; Yan, Z.; Ma, B.; Zhang, Z.; Chen, W. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere 2015, 138, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, G.; Xie, Z.; Zhang, Z.; Li, S.; Yan, Z. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci. Total. Environ. 2015, 511, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef]
- Malarvizhi, A.; Kavitha, C.; Saravanan, M.; Ramesh, M. Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J. King Saud Univ. Sci. 2012, 2, 179–186. [Google Scholar] [CrossRef]
- Tsiaka, P.; Tsarpali, V.; Ntaikou, I.; Kostopoulou, M.N.; Lyberatos, G.; Dailianis, S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 2013, 8, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Martínez, G.V.; Del Valls, T.A.; Martín-Díaz, M.L. Early responses measured in the brachyuran crab Carcinus maenas exposed to carbamazepine and novobiocin: Application of a 2-tier approach. Ecotoxicol. Environ. Saf. 2013, 97, 47–58. [Google Scholar] [CrossRef]
- Hampel, M.; Bron, J.E.; Taggart, J.B.; Leaver, M.J. The antidepressant drug carbamazepine induces differential transcriptome expression in the brain of Atlantic salmon, Salmo salar. Aquat. Toxicol. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Rivetti, C.; Campos, B.; Barata, C. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat. Toxicol. 2016, 170, 289–296. [Google Scholar] [CrossRef]
- Kovacevic, V.; Simpson, A.J.; Simpson, M.J. 1 H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen. Comp. Biochem. Physiol. Part D 2016, 19, 199–210. [Google Scholar] [CrossRef]
- Song, Y.; Villeneuve, D.L.; Toyota, K.; Iguchi, T.; Tollefsen, K.E. Ecdysone receptor agonism leading to lethal molting disruption in arthropods: Review and adverse outcome pathway development. Environ. Sci. Technol. 2017, 8, 4142–4157. [Google Scholar] [CrossRef] [PubMed]
- Zou, E. Impacts of xenobiotics on crustacean molting: The invisible endocrine disruption. Integr. Comp. Biol. 2005, 45, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Wang, Q.; Chen, R.; Lu, Q.; Yang, Z. Inter-specific differences in survival and reproduction of cladocerans to nitrite gradient and the ecological implications. Biochem. Syst. Ecol. 2013, 48, 151–156. [Google Scholar] [CrossRef]
- Lyu, K.; Cao, H.; Chen, R.; Wang, Q.; Yang, Z. Combined effects of hypoxia and ammonia to Daphnia similis estimated with life-history traits. Environ. Sci. Pollut. Res. 2013, 8, 5379–5387. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Pei, S.; Jing, W.; Zou, E.; Wang, L. Cadmium inhibits molting of the freshwater crab Sinopotamon henanense by reducing the hemolymph ecdysteroid content and the activities of chitinase and N-acetyl-beta-glucosaminidase in the epidermis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 169, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, W.Q.; Pei, Z.T.; Ahmad, F.; Xu, R.R.; Zhang, Y.M.; Sun, L.W. Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-Filters. Int. J. Environ. Res. Public Health 2017, 14, 1414. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Guideline for Testing of Chemicals No. 202, Daphnia sp. Acute Immobilisation Test; Organization for Economic Cooperation and Development: Paris, France, 2004. [Google Scholar]
- OECD. OECD Guideline for Testing of Chemicals No. 211, Daphnia Magna Reproduction Test; Organization for Economic Cooperation and Development: Paris, France, 2012. [Google Scholar]
- Boronat, M.D.; Miracle, M.R. Size distribution of Daphnia longispina in the vertical profile. In Cladocera: The Biology of Model Organisms; Springer: Dordrecht, The Netherlands, 1997; pp. 187–196. [Google Scholar]
- Sun, J.; Luo, Q.; Wang, D.; Wang, Z. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicol. Environ. Saf. 2015, 117, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, C.M.; Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 2005, 2, 200–207. [Google Scholar] [CrossRef]
- Jos, A.; Repetto, G.; Rios, J.C.; Hazen, M.J.; Molero, M.L.; del Peso, A.; Salguero, M.; Fernández-Freire, P.; Pérez-Martín, J.M.; Cameán, A. Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicol. In Vitro 2003, 5, 525–532. [Google Scholar] [CrossRef]
- Ferrari, B.; Paxéus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003, 3, 359–370. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, K.; Jung, J.; Park, S.; Kim, P.G.; Park, J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 3, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Žitňan, D.; Kim, Y.J.; Žitňanová, I.; Roller, L.; Adams, M.E. Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen. Comp. Endocrinol. 2007, 1, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Sastri, A.R.; Roff, J.C. Rate of chitobiase degradation as a measure of development rate in planktonic Crustacea. Can. J. Fish. Aquat. Sci. 2000, 10, 1965–1968. [Google Scholar] [CrossRef]
- Avila, T.R.; de Souza Machado, A.A.; Bianchini, A. Estimation of zoo-plankton secondary production in estuarine waters: Comparison between the enzymatic (chitobiase)method and mathematical models using crustaceans. J. Exp. Mar. Biol. Ecol. 2012, 416, 144–152. [Google Scholar] [CrossRef]
- Duchet, C.; Inafuku, M.M.; Caquet, T.; Larroque, M.; Franquet, E.; Lagneau, C.; Lagadic, L. Chitobiase activity as an indicator of altered survival, growth and reproduction in Daphnia pulex and Daphnia magna (Crustacea: Cladocera) exposed to spinosad and diflubenzuron. Ecotoxicol. Environ. Saf. 2011, 4, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Dodson, S.I.; Merritt, C.M.; Shannahan, J.P.; Shults, C.M. Low exposure concentrations of atrazine increase male production in Daphnia pulicaria. Environ. Toxicol. Chem. 1999, 7, 1568–1573. [Google Scholar] [CrossRef]
- Oropesa, A.; Floro, A.; Palma, P. Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ. Sci. Pollut. Res. 2016, 23, 17311–17321. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Krell, P.J.; Doucet, D.; Arif, B.M.; Feng, Q.L. Cloning, expression, and localization of a moltrelated beta-N-acetylglucosaminidase in the spruce budworm, Choristoneura fumiferana. Arch. Insect Biochem. Physiol. 2008, 68, 49–59. [Google Scholar] [CrossRef]
Exposure | Treatments | NC 1 (μg/L) | MC 2 (μg/L) |
---|---|---|---|
Acute exposure | Solvent Control | 0 | <LOQ 3 |
6.25 μg/L | 6.25 | 6.25 ± 0.05 | |
12.5 μg/L | 12.5 | 12.62 ± 0.21 | |
25 μg/L | 25 | 25.68 ± 0.15 | |
50 μg/L | 50 | 50.26 ± 1.25 | |
100 μg/L | 100 | 100.89 ± 2.63 | |
200 μg/L | 200 | 203.40 ± 2.59 | |
Chronic exposure | Solvent Control | 0 | <LOQ 3 |
0.03 μg/L | 0.03 | 0.03 ± 0.01 | |
0.3 μg/L | 0.3 | 0.30 ± 0.06 | |
3 μg/L | 3 | 3.02 ± 0.53 | |
30 μg/L | 30 | 31.86 ± 0.88 |
Time | Endpoint | |||||
---|---|---|---|---|---|---|
Molting | Chitobiase | |||||
NOEC 1 | LOEC 2 | EC50 3 | NOEC | LOEC | EC50 3 | |
24 h | 200 | >200 | / 4 | 200 | >200 | / 4 |
48 h | 100 | 200 | / 4 | 50 | 100 | 3985.245 |
72 h | 100 | 200 | / 4 | 12.5 | 25 | 345.585 |
96 h | 12.5 | 25 | 864.38 5 | <6.25 | 6.25 | 306.175 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Gu, X.; Zeng, Q.; Mao, Z. Acute and Chronic Toxicity of Carbamazepine on the Release of Chitobiase, Molting, and Reproduction in Daphnia similis. Int. J. Environ. Res. Public Health 2019, 16, 209. https://doi.org/10.3390/ijerph16020209
Chen H, Gu X, Zeng Q, Mao Z. Acute and Chronic Toxicity of Carbamazepine on the Release of Chitobiase, Molting, and Reproduction in Daphnia similis. International Journal of Environmental Research and Public Health. 2019; 16(2):209. https://doi.org/10.3390/ijerph16020209
Chicago/Turabian StyleChen, Huihui, Xiaohong Gu, Qingfei Zeng, and Zhigang Mao. 2019. "Acute and Chronic Toxicity of Carbamazepine on the Release of Chitobiase, Molting, and Reproduction in Daphnia similis" International Journal of Environmental Research and Public Health 16, no. 2: 209. https://doi.org/10.3390/ijerph16020209
APA StyleChen, H., Gu, X., Zeng, Q., & Mao, Z. (2019). Acute and Chronic Toxicity of Carbamazepine on the Release of Chitobiase, Molting, and Reproduction in Daphnia similis. International Journal of Environmental Research and Public Health, 16(2), 209. https://doi.org/10.3390/ijerph16020209