A New Model Describing Copper Dose–Toxicity to Tomato and Bok Choy Growth in a Wide Range of Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. EDTA-Extractability of Cu in 17 Chinese Soils
2.3. Phytotoxicity Based on EDTA-Extractable Cu in 17 Chinese Soils
2.4. Phytotoxicity Model Incorporating Soil Properties and EDTA-Extractable Cu Concentration
3. Results and Discussion
3.1. Phytotoxicity Thresholds Based on EDTA-Extractable Cu for Tomato and Bok Choy
3.2. Relationship Between Cu Phytotoxicity Thresholds Based on EDTA-Extractable Concentration and Soil Properties
3.3. Phytotoxicity Predictive Model of EDTA-Extractable Cu for Tomato and Bok Choy
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wu, C.F.; Luo, Y.M.; Zhang, L.M. Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 2010, 156, 200–206. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Yang, X.E.; Long, X.X.; Ni, W.Z.; Ye, Z.Q.; He, Z.L.; Stoffella, P.J.; Calvert, D.V. Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. J. Environ. Sci. Health B 2002, 37, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, F.; Rejeb, S.; Ghorbal, M.H.; Morel, J.L. Plant response to copper toxicity as affected by plant species and soil type. J. Plant Nutr. 2005, 28, 379–392. [Google Scholar] [CrossRef]
- Zhou, D.M.; Xue, Y.; Liu, X.H.; Hao, X.Z.; Chen, H.M.; Shen, Z.G.; Si, Y.B. Responses of different pakchoi (Brassica chinensis L.) cultivars to Cu toxicity. Pedosphere 2005, 15, 9–15. [Google Scholar]
- Guo, G.Y.; Yuan, T.; Wang, W.H.; Li, D.; Cheng, J.P.; Gao, Y.; Zhou, P. Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Environ. Geochem. Health. 2011, 33, 217–224. [Google Scholar] [CrossRef]
- Vilar, S.; Gutierrez, A.; Antezana, J.; Carral, P.; Alvarez, A. A comparative study of three different methods for the sequential extraction of heavy metals in soil. Toxicol. Environ. Chem. 2005, 87, 1–10. [Google Scholar] [CrossRef]
- Lee, C.S.; Kao, M.M. Distribution of forms of heavy metals in soils contaminated by metallurgical smelter emissions. Environ. Lett. 2004, 39, 577–585. [Google Scholar] [CrossRef]
- Krishnamurti, G.S.R. Chapter 20 Chemical methods for assessing contaminant bioavailability in soils. Elsevier Sci. Technol. 2008, 495–520. [Google Scholar]
- Ma, Y.B.; Uren, N.C. Transformations of heavy metals added to soil—Application of a new sequential extraction procedure. Geoderma 1998, 84, 157–168. [Google Scholar] [CrossRef]
- Kabata, P.A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Thibault Sterckeman, F.D.; Baize, D.; Fourrier, H.; Proix, N.; Schvartz, C. Factors affecting trace element concentrations in soils developed on recent marine deposits from northern France. Appl. Geochem. 2004, 19, 89–103. [Google Scholar] [CrossRef]
- Manouchehri, N.; Besancon, S.; Bermond, A. Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Anal. Chim. Acta 2006, 559, 105–112. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, F.J.; Lombi, E.; McGrath, S.P. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111–120. [Google Scholar] [CrossRef]
- Struijs, J.; Van de Meent, D.; Peijnenburg, W.J.; Ma, V.D.H.; Crommentuijn, T. Added risk approach to derive maximum permissible concentrations for heavy metals: How to take natural background levels into account. Ecotoxicol. Environ. Saf. 1997, 37, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Crommentuijn, T.; Polder, M.; Sijm, D.; Bruijn, J.D.; Plassche, E.V.D. Evaluation of the Dutch environmental risk limits for metals by application of the added risk approach. Environ. Toxicol. Chem. 2000, 19, 1692–1701. [Google Scholar] [CrossRef]
- Crommentuijn, T.; Sijm, D.; Bruijn, J.D.; Hoop, M.V.D.; Leeuwen, K.V.; Plassche, E.V.D. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J. Environ. Manag. 2000, 60, 121–143. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Wang, X.; Ma, Y. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture. Ecotoxicol. Environ. Saf. 2009, 72, 1760–1766. [Google Scholar] [CrossRef]
- Oorts, K.; Ghesquiere, U.; Smolders, E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environ. Toxicol. Chem. 2007, 26, 1130–1138. [Google Scholar] [CrossRef]
- Sherrod, L.; Dunn, G.; Peterson, G.; Kolberg, R. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Matejovic, I. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Commun. Soil Sci. Plan. 1997, 28, 1499–1511. [Google Scholar] [CrossRef]
- Mckeague, J.A.; Day, J.H. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 1966, 46, 13–22. [Google Scholar] [CrossRef]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clay Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Soil-Quality—Determination of the Effects of Pollutants on Soil Flora—Part 2: Effects of Chemicals on the Emergence and Growth of Higher Plants; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Haanstra, L.; Doelman, P.; Voshaar, J.O. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 1985, 84, 293–297. [Google Scholar] [CrossRef]
- Li, B.; Zhang, H.T.; Ma, Y.B.; McLaughlin, M.J. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils. Environ. Toxicol. Chem. 2013, 32, 2372–2378. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Li, B.; Wei, D.P.; Ma, Y.B.; Huang, Z.B. Cross-species extrapolation of phytotoxicity prediction models for nickel and copper added to soil. Asian J. Ecotoxicol. 2013, 8, 77–84. [Google Scholar]
- Quartacci, M.F.; Cosi, E.; Meneguzzo, S.; Sgherri, C.; Navari-Izzo, F. Uptake and translocation of copper in Brassicaceae. J. Plant. Nutr. 2003, 26, 1065–1083. [Google Scholar] [CrossRef]
- Haware, D.J.; Chauhan, A.; Ramteke, D.S.; Inam, F. Studies of toxic metals (Pb, Cd, Cu, Zn, Fe, Ni) content in green leafy vegetables locally available in Mysuru city, India. Int. Res. J. Environ. Sci. 2017, 6, 6–12. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy Metal (Cu, Cd, Zn and Pb) contamination of vegetable in Urban India: A case Study in Varanasi. Environ. Pollut. 2008, 154, 254–263. [Google Scholar] [CrossRef]
- Tsang, D.C.W.; Zhang, W.H.; Lo, I.M.C. Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere 2007, 68, 234–243. [Google Scholar] [CrossRef]
- Li, X.F.; Sun, J.W.; Huang, Y.Z.; Ma, Y.B.; Zhu, Y.G. Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay. Environ. Toxicol. Chem. 2010, 29, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaperon, S.; Sauve, S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol. Biochem. 2007, 39, 2329–2338. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zuo, Y.B.; Wang, B.R.; Li, J.M.; Ma, Y.B. Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Plant Soil 2010, 333, 365–373. [Google Scholar] [CrossRef]
- Schabenberger, O.; Tharp, B.E.; Kells, J.J.; Penner, D. Statistical tests for hormesis and effective dosages in herbicide dose response. Agron. J. 1999, 91, 713–721. [Google Scholar] [CrossRef]
Site | pH 1 (1:5) | EC (μS∙cm−1) | CEC 2 (cmol+∙kg−1) | OC 3 (%) | CaCO3 (%) | OX 4-Mn (mg∙kg−1) | CD 5-Mn (mg∙kg−1) | CD 5-Fe (mg∙kg−1) |
---|---|---|---|---|---|---|---|---|
Haikou | 4.93 | 110.8 | 8.75 | 1.5 | <0.5 | 200 | 574 | 83,920 |
Qiyang | 5.31 | 74.1 | 7.47 | 0.9 | <0.5 | 294 | 422 | 26,154 |
Hailun | 6.56 | 153 | 33.6 | 3 | <0.5 | 451 | 396 | 6559 |
Jiaxing | 6.7 | 158.8 | 19.3 | 1.4 | <0.5 | 261 | 297 | 10,824 |
Hangzhou | 6.8 | 203.3 | 12.83 | 2.5 | <0.5 | 135 | 153 | 8413 |
Chongqing | 7.12 | 71 | 22.3 | 1 | <0.5 | 283 | 315 | 7727 |
Guangzhou | 7.27 | 136.7 | 8.3 | 1.5 | 0.15 | 33 | 48 | 11,411 |
Lingshan | 7.48 | 92.5 | 22.6 | 4.3 | 4.27 | 267 | 276 | 6950 |
Hulunber | 7.66 | 888 | 22.7 | 2.7 | 0.27 | 307 | 322 | 5259 |
Gongzhuling | 7.82 | 146.9 | 28.7 | 2.2 | 0.27 | 387 | 366 | 6932 |
Shijiazhuang | 8.19 | 302 | 11.7 | 1 | 3.84 | 222 | 261 | 7544 |
Urumchi | 8.72 | 226.5 | 10.3 | 0.9 | 5.08 | 251 | 305 | 4795 |
Yangling | 8.83 | 83.2 | 8.46 | 0.6 | 8.92 | 288 | 350 | 7193 |
Langfang | 8.84 | 5.7 | 6.36 | 0.6 | 2.42 | 74 | 112 | 3729 |
Zhangye | 8.86 | 108.7 | 8.08 | 1 | 7.75 | 121 | 166 | 4289 |
Zhengzhou | 8.86 | 151.8 | 8.5 | 1.6 | 0.15 | 233 | 331 | 8356 |
Dezhou | 8.9 | 111.8 | 8.33 | 0.7 | 6.17 | 145 | 219 | 4965 |
Plant | Treatment | Regression Equation | R2 | p | ||
---|---|---|---|---|---|---|
Tomato | Unleached | log EC10-EDTA = 3.588 − 0.607 log CD-Mn | 0.51 | 0.036 | ||
(n = 17) | log EC10-EDTA = 3.377 − 0.803 log CD-Mn + 0.617 log CEC | 0.677 | 0.006 | 0.04 | ||
log EC10-EDTA = 3.305 − 0.990 log CD-Mn + 0.971 log CEC + 0.057 CaCO3 | 0.852 | <0.001 | 0.001 | 0.003 | ||
log EC50-EDTA = 5.104 − 0.636 log CD-Fe | 0.684 | 0.002 | ||||
Leached | log EC10-EDTA = 2.139 + 0.725 log OC | 0.515 | 0.034 | |||
(n = 17) | log EC10-EDTA = 0.870 + 1.015 log OC + 0.162 pH | 0.737 | 0.002 | 0.011 | ||
log EC50-EDTA = 4.931 − 0.577 log CD-Fe | 0.523 | 0.031 | ||||
log EC50-EDTA = 2.552 + 0.844 log OC | 0.601 | 0.011 | ||||
log EC50-EDTA = 1.124 + 1.169 log OC + 0.183 pH | 0.845 | <0.001 | 0.002 | |||
Bok choy | Unleached | log EC10-EDTA = 1.286 + 1.377 log OC | 0.798 | <0.001 | ||
(n = 17) | log EC50-EDTA = 1.910 + 0.838 log OC | 0.757 | <0.001 | |||
log EC50-EDTA = 1.775 + 1.092 log OC + 0.043 CaCO3 | 0.864 | <0.001 | 0.008 | |||
Leached | log EC10-EDTA = 1.526 + 0.690 log OC | 0.617 | 0.011 | |||
(n = 17) | log EC50-EDTA = 1.981 + 0.651 log OC | 0.585 | 0.017 | |||
log EC50-EDTA = 1.808 + 0.960 log OC + 0.054 CaCO3 | 0.771 | 0.001 | 0.014 |
Phytotoxicity Endpoints | Treatment | Y0 | a | b | R2 | p |
---|---|---|---|---|---|---|
Tomato | Unleached | 100.82 | a = 0.63 + 0.21 pH + 0.54 logOC + 0.28 logCEC | b = 0.63 pH + 0.002 OX-Mn − 9.59 | 0.92 | <0.01 |
Leached | 106.30 | a = 0.72 + 0.20 pH + 0.71 logOC + 0.33 logCEC | b = 0.43 pH + 0.007 OX-Mn − 6.21 | 0.91 | <0.01 | |
Bok choy | Unleached | 99.93 | a = 1.43 + 0.07 pH + 0.99 logOC − 0.02 logCEC | b = 1.13 pH − 12.61 | 0.91 | <0.01 |
Leached | 101.09 | a = 1.61 + 0.05 pH + 0.77 logOC + 0.05 logCEC | b = 0.98 pH − 11.75 | 0.90 | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Ma, Y.; Zhu, G.; Li, J. A New Model Describing Copper Dose–Toxicity to Tomato and Bok Choy Growth in a Wide Range of Soils. Int. J. Environ. Res. Public Health 2019, 16, 264. https://doi.org/10.3390/ijerph16020264
Jiang B, Ma Y, Zhu G, Li J. A New Model Describing Copper Dose–Toxicity to Tomato and Bok Choy Growth in a Wide Range of Soils. International Journal of Environmental Research and Public Health. 2019; 16(2):264. https://doi.org/10.3390/ijerph16020264
Chicago/Turabian StyleJiang, Bao, Yibing Ma, Guangyun Zhu, and Jun Li. 2019. "A New Model Describing Copper Dose–Toxicity to Tomato and Bok Choy Growth in a Wide Range of Soils" International Journal of Environmental Research and Public Health 16, no. 2: 264. https://doi.org/10.3390/ijerph16020264
APA StyleJiang, B., Ma, Y., Zhu, G., & Li, J. (2019). A New Model Describing Copper Dose–Toxicity to Tomato and Bok Choy Growth in a Wide Range of Soils. International Journal of Environmental Research and Public Health, 16(2), 264. https://doi.org/10.3390/ijerph16020264