Examining the Association between Neighbourhood Socioeconomic Disadvantage and Type 2 Diabetes Comorbidity in Serious Mental Illness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Obesity and Overweight; Fact sheet N 311; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Holt, R.I.; Mitchell, A.J. Diabetes mellitus and severe mental illness: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2015, 11, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Druss, B. The epidemiology of diabetes in psychotic disorders. Lancet Psychiatry 2015, 2, 431–451. [Google Scholar] [CrossRef]
- De Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.A.R.C.E.L.O.; Cohen, D.A.N.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.J.; Ndetei, D.M.; et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011, 10, 52–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wändell, P.; Ljunggren, G.; Wahlström, L.; Carlsson, A.C. Diabetes and psychiatric illness in the total population of Stockholm. J. Psychosom. Res. 2014, 77, 169–173. [Google Scholar] [CrossRef]
- Ribe, A.R.; Laursen, T.M.; Sandbaek, A.; Charles, M.; Nordentoft, M.; Vestergaard, M. Long-term mortality of persons with severe mental illness and diabetes: A population-based cohort study in Denmark. Psychol. Med. 2014, 44, 3097–3107. [Google Scholar] [CrossRef]
- Tirupati, S.; Chua, L.E. Obesity and metabolic syndrome in a psychiatric rehabilitation service. Aust. N. Z. J. Psychiatry 2007, 41, 606–610. [Google Scholar] [CrossRef]
- Šprah, L.; Dernovšek, M.Z.; Wahlbeck, K.; Haaramo, P. Psychiatric readmissions and their association with physical comorbidity: A systematic literature review. BMC Psychiatry 2017, 17, 2. [Google Scholar] [CrossRef]
- Kurdyak, P.; Vigod, S.; Duchen, R.; Jacob, B.; Stukel, T.; Kiran, T. Diabetes quality of care and outcomes: Comparison of individuals with and without schizophrenia. Gen. Hosp. Psychiatry 2017, 46, 7–13. [Google Scholar] [CrossRef]
- Zhang, B.H.; Han, M.; Zhang, X.Y.; Hui, L.; Jiang, S.R.; De Yang, F.; Tan, Y.L.; Wang, Z.R.; Li, J.; Huang, X.F. Gender differences in cognitive deficits in schizophrenia with and without diabetes. Compr. Psychiatry 2015, 63, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Huang, X.-F.; Chen, D.C.; Xiu, M.; Kosten, T.R.; Zhang, X.Y. Diabetes and cognitive deficits in chronic schizophrenia: A case-control study. PLoS ONE 2013, 8, e66299. [Google Scholar] [CrossRef]
- Almog, M.; Curtis, S.; Copeland, A.; Congdon, P. Geographical variation in acute psychiatric admissions within New York City 1990–2000: Growing inequalities in service use? Soc. Sci. Med. 2004, 59, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, J.B.; Jones, P.B.; Ullrich, S.; Coid, J.W. Social Deprivation, Inequality, and the Neighborhood-Level Incidence of Psychotic Syndromes in East London. Schizophr. Bull. 2014, 40, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Astell-Burt, T.; Feng, X.; Kolt, G. Identification of the impact of crime on physical activity depends upon neighbourhood scale: Multilevel evidence from 203,883 Australians. Health Place 2015, 31, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Butterworth, P. Dietary patterns and depressive symptoms over time: Examining the relationships with socioeconomic position, health behaviours and cardiovascular risk. PLoS ONE 2014, 9, e87657. [Google Scholar] [CrossRef]
- Kirkbride, J.B.; Boydell, J.; Ploubidis, G.B.; Morgan, C.; Dazzan, P.; McKenzie, K.; Murray, R.M.; Jones, P.B. Testing the association between the incidence of schizophrenia and social capital in an urban area. Psychol. Med. 2008, 38, 1083–1094. [Google Scholar] [CrossRef]
- Galea, S.; Ahern, J.; Nandi, A.; Tracy, M.; Beard, J.; Vlahov, D. Urban Neighborhood Poverty and the Incidence of Depression in a Population-Based Cohort Study. Ann. Epidemiol. 2007, 17, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.; Boyle, P.J.; Davey, P.G.; Feng, Z.; Morris, A.D. Locality deprivation and Type 2 diabetes incidence: A local test of relative inequalities. Soc. Sci. Med. 2007, 65, 1953–1964. [Google Scholar] [CrossRef]
- Cubbin, C.; Sundquist, K.; Ahlén, H.; Johansson, S.-E.; Winkleby, M.A.; Sundquist, J. Neighborhood deprivation and cardiovascular disease risk factors: Protective and harmful effects. Scand. J. Public Health 2006, 34, 228–237. [Google Scholar] [CrossRef]
- Walsan, R.; Bonney, A.; Mayne, D.J.; Pai, N.; Feng, X.; Toms, R. Serious Mental Illness, Neighborhood Disadvantage, and Type 2 Diabetes Risk: A Systematic Review of the Literature. J. Prim. Care Community Health 2018, 9, 2150132718802025. [Google Scholar] [CrossRef]
- Mezuk, B.; Chaikiat, Å.; Li, X.; Sundquist, J.; Kendler, K.S.; Sundquist, K. Depression, neighborhood deprivation and risk of type 2 diabetes. Health Place 2013, 23, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Walsan, R.; Bonney, A.; Mayne, D.J.; Pai, N.; Feng, X. Geographic inequalities in the distribution of serious mental illness-type 2 diabetes comorbidity. In Proceedings of the International Medical Geography Symposium, Queenstown, New Zealand, 30 June–5 July 2019. [Google Scholar]
- Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 2001, 30, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Population by Age, Sex, Regions of Australia; Australian Bureau of Statistics: Canberra, Australia, 2011.
- Ghosh, A.; Charlton, K.E.; Girdo, L.; Batterham, M. Using data from patient interactions in primary care for population level chronic disease surveillance: The Sentinel Practices Data Sourcing (SPDS) project. BMC Public Health 2014, 14, 557. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. A Introduction to Socioeconomic Indexex of the Areas (SEIFA); ABS, Ed.; Australian Bureau of Statistics: Canberra, Australia, 2011.
- ABS; Australian Statistical Geography Standard (ASGS). Non ABS Structures 2016, Australian Bureau of Statistics; Australian Bureau of Statistics: Canberra, Australia, 2016.
- Waller, L.A.; Gotway, C.A. Applied Spatial Statistics for Public Health Data; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- ABS; Standard Australian Classification of Countries (SACC). Australian Bureau of Statistics; Australian Bureau of Statistics: Canberra, Australia, 2016.
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling; SAGE: Newcastle upon Tyne, UK, 1999. [Google Scholar]
- Merlo, J.; Chaix, B.; Ohlsson, H.; Beckman, A.; Johnell, K.; Hjerpe, P.; Råstam, L.; Larsen, K. A brief conceptual tutorial of multilevel analysis in social epidemiology: Using measures of clustering in multilevel logistic regression to investigate contextual phenomena. J. Epidemiol. Community Health 2006, 60, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Merlo, J. Intermediate and advanced topics in multilevel logistic regression analysis. Stat. Med. 2017, 36, 3257–3277. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Merlo, J. Appropriate Assessment of Neighborhood Effects on Individual Health: Integrating Random and Fixed Effects in Multilevel Logistic Regression. Am. J. Epidemiol. 2005, 161, 81–88. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Diez Roux, A.V. Estimating neighborhood health effects: The challenges of causal inference in a complex world. Soc. Sci. Med. 2004, 58, 1953–1960. [Google Scholar] [CrossRef]
- Diez Roux, A.V. Neighborhoods and Health: What Do We Know? What Should We Do? Am. J. Public Health 2016, 106, 430. [Google Scholar] [CrossRef]
- Dauncey, K.; Giggs, J.; Baker, K.; Harrison, G. Schizophrenia in Nottingham: Lifelong Residential Mobility of a Cohort. Br. J. Psychiatry 1993, 163, 613–619. [Google Scholar] [CrossRef]
- Bonney, A.D.; Mayne, D.J.; Caputi, P.; Weston, K.M.; Magee, C.A.; Ghosh, A. Area level socioeconomic disadvantage and diabetes control in the SIMLR Study cohort: Implications for health service planning. PLoS ONE 2015, 10, e0137261. [Google Scholar]
- Astell-Burt, T.; Feng, X.; Kolt, G.S.; McLean, M.; Maberly, G. Understanding geographical inequities in diabetes: Multilevel evidence from 114,755 adults in Sydney, Australia. Diabetes Res. Clin. Pract. 2014, 106, e68–e73. [Google Scholar] [CrossRef]
- Mair, C.; Roux, A.V.D.; Galea, S. Are neighbourhood characteristics associated with depressive symptoms? A review of evidence. J. Epidemiol. Community Health 2008, 62, 940–946. [Google Scholar] [PubMed]
- Dendup, T.; Feng, X.; Clingan, S.; Astell-Burt, T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Suvisaari, J.; Perälä, J.; Saarni, S.I.; Härkänen, T.; Pirkola, S.; Joukamaa, M.; Koskinen, S.; Lönnqvist, J.; Reunanen, A. Type 2 diabetes among persons with schizophrenia and other psychotic disorders in a general population survey. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 129–136. [Google Scholar] [CrossRef]
- Sun, L.; Getz, M.; Daboul, S.; Jay, M.; Sherman, S.; Rogers, E.; Aujero, N.; Rosedale, M.; Goetz, R.R.; Weissman, J.; et al. Independence of diabetes and obesity in adults with serious mental illness: Findings from a large urban public hospital. J. Psychiatr. Res. 2018, 99, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Cubbin, C. Where We Live Matters for Our Health:Neighborhoods and Health in ISSUE BRIEF 3: Neighborhoods and Health; Commission on Health.Org, Robert Wood Johnson Foundation: Princeton, NJ, USA, 2008. [Google Scholar]
- Morgan, V.A.; Waterreus, A.; Jablensky, A.; MacKinnon, A.; McGrath, J.J.; Carr, V.; Bush, R.; Castle, D.; Cohen, M.; Harvey, C.; et al. People living with psychotic illness in 2010: The second Australian national survey of psychosis. Aust. N. Z. J. Psychiatry 2012, 46, 735–752. [Google Scholar] [CrossRef]
Variables | Individuals with SMI n = 3816 | Individuals with SMI–T2D Comorbidity n = 463 | % of Individuals with SMI who Also Have Comorbidity (95% Cl) |
---|---|---|---|
Individual variables | |||
Gender | |||
Female | 1848 (48%) | 245 (53%) | 13.3 (11.8–14.9) |
Male | 1968 (52%) | 218 (47%) | 11.1 (9.7–12.5) |
Age, years (Mean (SD)) | |||
Age, years | 43.6 (18.5) | 58.8 (15.7) | |
18–44 | 1961 (51%) | 92 (20%) | 4.7 (03.8–05.7) |
45–65 | 1213 (32%) | 193 (42%) | 15.9 (13.9–18.0) |
65+ | 642 (17%) | 178 (38%) | 27.7 (24.3–31.2) |
Country of birth | |||
Australia | 3104 (81%) | 339 (73%) | 10.9 (9.9–12.1) |
Oceania excluding Australia | 74 (2%) | 12 (3%) | 16.2 (9.5–26.2) |
UK & Ireland | 212 (6%) | 35 (8%) | 16.5 (12.1–22.1) |
Western Europe | 137 (4%) | 29 (6%) | 21.2 (15.2–28.8) |
Eastern and Central Europe | 125 (3%) | 29 (6%) | 23.2 (16.7–31.3) |
North East Asia | 17 (0%) | 0 (0%) | 0.0 (0–18.4) |
South East Asia | 51 (1%) | 6 (1%) | 11.8 (5.5–23.4) |
Central and South Asia | 16 (0%) | 3 (1%) | 18.8 (6.6–43.0) |
Middle East and North Africa | 39 (1%) | 9 (2%) | 23.1 (12.7–38.3) |
Sub-Saharan Africa | 20 (1%) | 0 (0%) | 0.0 (0–16.1) |
Americas | 21 (1%) | 1 (0%) | 4.8 (0.9–22.7) |
Neighbourhood level variables | |||
IRSD as quintiles | |||
Q1 (Highest) | 1752 (46 %) | 229 (49%) | 13.1 (11.6–14.7) |
Q2 | 943 (25 %) | 120 (26%) | 12.7 (10.7–14.9) |
Q3 | 620 (16 %) | 75 (16%) | 12.1 (9.8–14.9) |
Q4 | 362 (10 %) | 34 (7%) | 9.4 (6.8–12.8) |
Q5 (Lowest) | 139 (4 %) | 7 (2%) | 5.1 (2.5–10.0) |
Variable | Model 1 | Model 2 | Model 3 |
---|---|---|---|
OR (95% Cl) | OR (95% Cl) | OR (95% Cl) | |
Individual variables | |||
Gender | p = 0.658 | p = 0.687 | |
Female | 1.00 | 1.00 | |
Male | 0.95 (0.78–1.17) | 0.96 (0.78–1.17) | |
Age | p < 0.05 | p < 0.05 | |
18–44 | 1.00 | ||
45–65 | 3.79 (2.91–4.93) | 3.78 (2.90–4.92) | |
65+ | 7.68 (5.77–10.23) | 7.82 (5.87–10.42) | |
Country of birth | p = 0.137 | p = 0.149 | |
Australia | 1.00 | 1.00 | |
Oceania excluding Australia | 1.57 (0.81–3.03) | 1.53 (0.79–2.97) | |
UK & Ireland | 0.84 (0.57–1.26) | 0.88 (0.59–1.31) | |
Western Europe | 0.99 (0.63–1.54) | 0.97 (0.62–1.52) | |
Eastern and Central Europe | 1.30 (0.82–2.05) | 1.30 (0.82–2.06) | |
South East Asia | 1.30 (0.53–3.19) | 1.30 (0.52–3.19) | |
Central and South Asia | 2.03 (0.53–7.82) | 2.13 (0.56–8.10) | |
Middle East and North Africa | 1.84 (0.83–4.09) | 1.87 (0.84–4.16) | |
Americas | 0.42 (0.06–3.25) | 0.41 (0.05–3.15) | |
Neighbourhood Variable | |||
IRSD quintiles | p <0.05 | ||
Q5 (Least disadvantaged) | 1.00 | ||
Q4 | 1.87 (0.77–4.53) | ||
Q3 | 2.67 (1.14–6.15) | ||
Q2 | 2.92 (1.28–6.67) | ||
Q1 (Most disadvantaged) | 3.20 (1.42–7.20) | ||
Variance of random effects | |||
T2 | 0.098 | 0.073 | 0.056 |
PCV | Ref | 25.5% | 42.9% |
ICC | 0.029 | 0.0217 | 0.017 |
MOR | 1.347 | 1.293 | 1.252 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsan, R.; Mayne, D.J.; Feng, X.; Pai, N.; Bonney, A. Examining the Association between Neighbourhood Socioeconomic Disadvantage and Type 2 Diabetes Comorbidity in Serious Mental Illness. Int. J. Environ. Res. Public Health 2019, 16, 3905. https://doi.org/10.3390/ijerph16203905
Walsan R, Mayne DJ, Feng X, Pai N, Bonney A. Examining the Association between Neighbourhood Socioeconomic Disadvantage and Type 2 Diabetes Comorbidity in Serious Mental Illness. International Journal of Environmental Research and Public Health. 2019; 16(20):3905. https://doi.org/10.3390/ijerph16203905
Chicago/Turabian StyleWalsan, Ramya, Darren J Mayne, Xiaoqi Feng, Nagesh Pai, and Andrew Bonney. 2019. "Examining the Association between Neighbourhood Socioeconomic Disadvantage and Type 2 Diabetes Comorbidity in Serious Mental Illness" International Journal of Environmental Research and Public Health 16, no. 20: 3905. https://doi.org/10.3390/ijerph16203905
APA StyleWalsan, R., Mayne, D. J., Feng, X., Pai, N., & Bonney, A. (2019). Examining the Association between Neighbourhood Socioeconomic Disadvantage and Type 2 Diabetes Comorbidity in Serious Mental Illness. International Journal of Environmental Research and Public Health, 16(20), 3905. https://doi.org/10.3390/ijerph16203905