Anthropogenic Rare Earth Elements: Gadolinium in a Small Catchment in Guizhou Province, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Analytical Procedure
2.3. Data Treatment
3. Results and Discussion
3.1. The Distribution of Dissolved REEs
3.2. The REE Anomaly
3.2.1. The Negative Ce Anomaly
3.2.2. The Positive Eu Anomaly
3.2.3. The Positive Sm Anomaly
3.2.4. The Positive Gd Anomaly
3.3. Anthropogenic Gd in Jinzhong
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, S.Y.; Jung, H.S.; Choi, M.S.; Li, C.X. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet. Sci. Lett. 2002, 201, 407–419. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Wu, L. Rare Earth Elements as Indicators of Groundwater Mixing in the North China Plain: A Case Study in the Area of Hengshui City, China. Procedia Earth Planet. Sci. 2017, 17, 396–399. [Google Scholar] [CrossRef]
- Wang, Z.L.; Liu, C.Q.; Zhu, Z.Z. Rare earth element geochemistry of waters and suspended particles in alkaline lakes using extraction and sequential chemical methods. Geochem. J. 2013, 47, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Wu, Y.; Yang, X.; Xu, Z.; Liu, L.; Zhang, X.; Qian, H.; Sun, S.; Han, G.; Liu, C. Effects of topography and vegetation on distribution of rare earth elements in calcareous soils. Acta Geochim. 2017, 36, 469–473. [Google Scholar] [CrossRef]
- Martinez, R.E.; Pourret, O.; Faucon, M.P.; Dian, C. Effect of rare earth elements on rice plant growth. Chem. Geol. 2018, 489, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Olvera, S.M.; Trejo-Tellez, L.I.; Garcia-Morales, S.; Perez-Sato, J.A.; Gomez-Merino, F.C. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE 2018, 13, e0194691. [Google Scholar] [CrossRef] [PubMed]
- Migaszewski, Z.M.; Gałuszka, A. The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R.G. Rare Earth Elements in the Soil Environment. Curr. Pollut. Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef] [Green Version]
- Merschel, G.; Bau, M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci. Total Environ. 2015, 533, 91–101. [Google Scholar] [CrossRef]
- Kümmerer, K.; Helmers, E. Hospital Effluents as a Source of Gadolinium in the Aquatic Environment. Environ. Sci. Technol. 2000, 34, 573–577. [Google Scholar] [CrossRef]
- Elbaz-Poulichet, F.; Seidel, J.-L.; Othoniel, C. Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Res. 2002, 36, 1102–1105. [Google Scholar] [CrossRef]
- Bau, M.; Knappe, A.; Dulski, P. Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Geochemistry 2006, 66, 143–152. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environ. Sci Technol. 2016, 50, 4159–4168. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Kodani, T.; Ono, M.; Nakano, K.; Kunieda, T.; Tsuchida, Y.; Kaneshima, K.; Zhu, Y.; Fujimori, E. Potential Anthropogenic Pollution by Eu as well as Gd Observed in River Water around Urban Area. Chem. Lett. 2017, 46, 1327–1329. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl. Geochem. 2011, 26, 1877–1885. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A. The use of gadolinium and europium concentrations as contaminant tracers in the Nida River watershed in south-central Poland. Geol. Q. 2015, 60, 67–76. [Google Scholar] [CrossRef]
- Nozaki, Y.; Lerche, D.; Alibo, D.S.; Tsutsumi, M. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In. Geochim. Cosmochim. Acta 2000, 64, 3975–3982. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Taylor, H.E.; Nordstrom, D.K.; Barber, L.B. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ. Sci. Technol. 2005, 39, 6923–6929. [Google Scholar] [CrossRef]
- Knappe, A.; Möller, P.; Dulski, P.; Pekdeger, A. Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Geochemistry 2005, 65, 167–189. [Google Scholar] [CrossRef]
- Möller, P.; Paces, T.; Dulski, P.; Morteani, G. Anthropogenic Gd in Surface Water, Drainage Systems, and the Water Supply of the City of Prague, Czech Republic. Environ. Sci. Technol. 2002, 36, 2387. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, H.S. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur. Radiol. 2006, 16, 2619–2621. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Han, G. Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China. Appl. Geochem. 2009, 24, 1803–1816. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhang, S.; Li, X. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Appl. Geochem. 1998, 13, 451–462. [Google Scholar] [CrossRef]
- Zheng, T.; Deng, Y.; Lu, Z.; Gan, Y. Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. Diqiu Kexue—Zhongguo Dizhi Daxue Xuebao/Earth Sci. J. China Univ. Geosci. 2017, 42, 693–706. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Wang, G.; Shen, Z. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem. Geol. 2010, 270, 117–125. [Google Scholar] [CrossRef]
- Han, G.; Xu, Z.; Yang, T.; Zhang, G. Rare Earth Element Patterns in the Karst Terrains of Guizhou Province, China: Implication for Water/Particle Interaction. Aquat. Geochem. 2009, 15, 457. [Google Scholar] [CrossRef]
- Mao, L.; Mo, D.; Yang, J.; Guo, Y.; Lv, H. Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China. Quat. Int. 2014, 336, 80–88. [Google Scholar] [CrossRef]
- Han, G.; Yang, T.; Wu, Q.; Wang, Z. Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 116854. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral. Geochem. 1989, 21, 169–200. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet. Sci. Lett. 2007, 260, 361–371. [Google Scholar] [CrossRef]
- Song, H.; Shin, W.J.; Ryu, J.S.; Shin, H.S.; Chung, H.; Lee, K.S. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere 2017, 172, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Hissler, C.; Hostache, R.; Iffly, J.F.; Pfister, L.; Stille, P. Anthropogenic rare earth element fluxes into floodplains: Coupling between geochemical monitoring and hydrodynamic sediment transport modelling. Comptes Rendus Geosci. 2015, 347, 294–303. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Xiaoping, Z. Geochemistry of the rare earth elements in natural terrestrial waters: A review of what is currently known. Chin. J. Geochem. 1997, 16, 20–42. [Google Scholar] [CrossRef]
- García, M.G.; Lecomte, K.L.; Pasquini, A.I.; Formica, S.M.; Depetris, P.J. Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina). Geochim. Cosmochim. Acta 2007, 71, 5355–5368. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, H. Rare earth geochemistry in the dissolved, suspended and sedimentary loads in karstic rivers, Southwest China. Environ. Earth Sci. 2012, 66, 2217–2234. [Google Scholar] [CrossRef]
- Han, G.L.; Liu, C.Q. Dissolved rare earth elements in rivers draining karst terrain in Guizhou Province, SW China. Geochim. Cosmochim. Acta 2006, 70, A226. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Rare earth elements in river waters. Earth Planet. Sci. Lett. 1988, 89, 35–47. [Google Scholar] [CrossRef]
- Song, Z.; Liu, C.; Han, G.; Wang, Z.; Zhu, Z.; Yang, C. Enrichment and Release of Rare Earth Elements during Weathering of Sedimentary Rocks in Wujiang Catchments, Southwest China. J. Rare Earths 2006, 24, 491–496. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Elderfield, H.; Sholkovitz, E.R. Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet. Sci. Lett. 1987, 82, 280–288. [Google Scholar] [CrossRef]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Carlo, E.H.D.; Wen, X.Y.; Irving, M. The Influence of Redox Reactions on the Uptake of Dissolved Ce by Suspended Fe and Mn Oxide Particles. Aquat. Geochem. 1997, 3, 357–389. [Google Scholar] [CrossRef]
- Whitfield, M.; Elderfield, H.; Burton, J.D.; Bacon, M.P.; Liss, P.S. The Oceanic Chemistry of the Rare-Earth Elements: Discussion. Philos. Trans. R. Soc. Lond. Ser. A 1988, 325, 124–126. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Savascin, Y.; Conrad, M. Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: A hydrochemical study of their origin. Chem. Geol. 2004, 206, 97–118. [Google Scholar] [CrossRef]
- Leybourne, M.I.; Johannesson, K.H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochim. Cosmochim. Acta 2008, 72, 5962–5983. [Google Scholar] [CrossRef]
- Kato, H.; Tsuchiya, Y.; Ichino, Y.; Ichinose, A.; Yoshida, Y. In-Plane Anisotropy of Transport Property in BaTbO3-Doped SmBa2Cu3Oy Films. IEEE Trans. Appl. Supercond. 2019, 29. [Google Scholar] [CrossRef]
- Polozhentsev, O.E.; Kubrin, S.P.; Butova, V.V.; Kochkina, V.K.; Soldatov, A.V.; Stashenko, V.V. Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. J. Struct. Chem. 2016, 57, 1459–1468. [Google Scholar] [CrossRef]
- Palaimiene, E.; Macutkevic, J.; Karpinsky, D.V.; Kholkin, A.L.; Banys, J. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Lerat-Hardy, A.; Coynel, A.; Dutruch, L.; Pereto, C.; Bossy, C.; Gil-Diaz, T.; Capdeville, M.-J.; Blanc, G.; Schäfer, J. Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): Hospital effluents as a source of increasing gadolinium anomalies. Sci. Total Environ. 2019, 656, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Kulaksız, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Furlong, E.T.; Gray, J.L.; Phillips, P.J.; Wolf, R.E.; Esposito, K. Evaluating the Behavior of Gadolinium and Other Rare Earth Elements through Large Metropolitan Sewage Treatment Plants. Environ. Sci. Technol. 2010, 44, 3876. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G. Detection of anthropogenic gadolinium in the Brisbane River plume in Moreton Bay, Queensland, Australia. Mar. Pollut. Bull. 2010, 60, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Ort, C.; Keller, J. Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Res. 2009, 43, 3534–3540. [Google Scholar] [CrossRef]
- Merschel, G.; Bau, M.; Baldewein, L.; Dantas, E.L.; Walde, D.; Bühn, B. Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: Anthropogenic gadolinium and geogenic REEs in Lake Paranoá, Brasilia. Comptes Rendus Geosci. 2015, 347, 284–293. [Google Scholar] [CrossRef]
- Gu, Y. Governing the Water Environment of the Jinzhong River is Imminent. In Proceedings of the Guizhou Political Consultative Conference, Guiyang, China, 7 April 2016; p. B02. [Google Scholar]
- Su, S. Study on water environment control in Guiyang City. China Collect. Econ. 2019, 16–18. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Geochemical characteristics of dissolved heavy metals in Zhujiang River, Southwest China: Spatial-temporal distribution, source, export flux estimation, and a water quality assessment. PeerJ 2019, 7, e6578. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G. Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China. Water 2019, 11, 1076. [Google Scholar] [CrossRef]
- Lucia, F.; Visvikis, D.; Desseroit, M.-C.; Miranda, O.; Malhaire, J.-P.; Robin, P.; Pradier, O.; Hatt, M.; Schick, U. Prediction of outcome using pretreatment F-18-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 768–786. [Google Scholar] [CrossRef]
- Al-Sukhni, E.; Milot, L.; Fruitman, M.; Beyene, J.; Victor, J.C.; Schmocker, S.; Brown, G.; McLeod, R.; Kennedy, E. Diagnostic Accuracy of MRI for Assessment of T Category, Lymph Node Metastases, and Circumferential Resection Margin Involvement in Patients with Rectal Cancer: A Systematic Review and Meta-analysis. Ann. Surg. Oncol. 2012, 19, 2212–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample 1 | pH | Cl- | SO42− | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | ΣREE | Gd/Gd *,2 | Gdanthr. 3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Youyu | mg/L | mg/L | |||||||||||||||||||
YY-1 | 7.74 | 6.57 | 226.29 | 1.58 | 0.10 | 0.00 | 2.14 | 7.17 | 4.41 | 1.77 | 0.15 | 0.57 | 0.15 | 0.48 | 0.14 | 0.28 | 0.18 | 7.61 | 26.72 | 3.86 | 1.31 |
YY-2 | 8.14 | 4.50 | 333.76 | 1.22 | 0.19 | 0.41 | 2.34 | 4.43 | 2.64 | 0.87 | 0.12 | 0.80 | 0.10 | 0.53 | 0.29 | 0.63 | 0.08 | 10.96 | 25.63 | 1.43 | 0.26 |
YY-3 | 8.16 | 4.80 | 420.67 | 9.06 | 2.57 | 1.47 | 6.24 | 4.34 | 2.52 | 1.38 | 0.21 | 1.02 | 0.20 | 0.71 | 0.19 | 0.52 | 0.33 | 18.18 | 48.93 | 1.45 | 0.43 |
YY-4 | 7.79 | 4.42 | 328.93 | 3.49 | 0.50 | 0.28 | 1.76 | 3.97 | 2.51 | 0.89 | 0.08 | 0.53 | 0.11 | 0.32 | 0.08 | 0.58 | 0.13 | 10.58 | 25.82 | 2.15 | 0.48 |
YY-5 | 7.98 | 3.87 | 176.59 | 3.84 | 3.29 | 0.81 | 3.87 | 3.88 | 2.72 | 1.14 | 0.18 | 0.59 | 0.19 | 0.13 | 0.22 | 0.63 | 0.16 | 10.91 | 32.57 | 2.02 | 0.58 |
YY-6 | 7.98 | 5.22 | 111.31 | 2.66 | 0.81 | 0.46 | 1.94 | 4.39 | 2.47 | 0.47 | 0.06 | 0.40 | 0.08 | 0.20 | 0.07 | 0.39 | 0.04 | 7.59 | 22.02 | 1.36 | 0.13 |
YY-7 | 7.36 | 6.66 | 89.53 | 7.44 | 1.09 | 1.14 | 2.47 | 4.82 | 2.78 | 1.17 | 0.18 | 0.94 | 0.16 | 0.40 | 0.15 | 0.75 | 0.13 | 15.09 | 38.71 | 1.69 | 0.48 |
YY-8 | 7.63 | 4.58 | 303.33 | 2.99 | 0.12 | 0.41 | 2.81 | 4.87 | 2.86 | 0.71 | 0.19 | 0.68 | 0.14 | 0.52 | 0.08 | 0.95 | 0.12 | 12.06 | 29.51 | 1.27 | 0.15 |
YY-9 | 7.25 | 6.11 | 213.77 | 3.10 | 2.01 | 0.30 | 2.63 | 5.77 | 3.19 | 0.69 | 0.12 | 1.23 | 0.05 | 0.61 | 0.17 | 0.30 | 0.28 | 10.59 | 31.03 | 0.78 | 0.00 |
Baiyan | |||||||||||||||||||||
BY-10 | 8.13 | 7.27 | 267.95 | 3.32 | 0.97 | 0.35 | 2.81 | 6.00 | 3.75 | 0.49 | 0.04 | 0.59 | 0.11 | 0.53 | 0.04 | 0.48 | 0.22 | 7.22 | 26.91 | 0.96 | 0.00 |
BY-11 | 8.22 | 7.30 | 86.76 | 2.06 | 0.68 | 0.35 | 2.35 | 6.46 | 4.03 | 0.43 | 0.08 | 0.38 | 0.10 | 0.35 | 0.05 | 1.31 | 0.22 | 8.80 | 27.66 | 1.21 | 0.08 |
BY-12 | 8.13 | 8.01 | 106.31 | 2.82 | 0.77 | 0.13 | 2.71 | 6.95 | 4.21 | 1.42 | 0.25 | 0.91 | 0.10 | 0.73 | 0.07 | 0.95 | 0.15 | 7.77 | 29.93 | 2.05 | 0.73 |
BY-13 | 7.88 | 9.84 | 122.69 | 2.39 | 0.23 | 0.28 | 2.65 | 8.06 | 3.69 | 1.41 | 0.12 | 0.92 | 0.18 | 0.75 | 0.13 | 0.57 | 0.42 | 11.29 | 33.10 | 2.02 | 0.71 |
BY-14 | 7.75 | 13.03 | 100.72 | 5.50 | 3.29 | 0.68 | 4.08 | 10.28 | 5.88 | 1.09 | 0.19 | 0.89 | 0.24 | 0.82 | 0.14 | 0.96 | 0.42 | 12.11 | 46.58 | 1.44 | 0.33 |
BY-15 | 8.22 | 15.17 | 116.15 | 2.46 | 0.56 | 0.35 | 4.10 | 10.50 | 5.71 | 1.50 | 0.10 | 1.11 | 0.21 | 1.03 | 0.15 | 1.98 | 0.54 | 11.36 | 41.65 | 1.69 | 0.61 |
Jinzhong | |||||||||||||||||||||
JZ-16 | 7.76 | 10.97 | 94.52 | 2.56 | 1.47 | 0.10 | 1.76 | 7.69 | 4.50 | 1.54 | 0.09 | 0.78 | 0.12 | 0.52 | 0.07 | 0.88 | 0.27 | 7.83 | 30.19 | 2.75 | 0.98 |
JZ-17 | 8.02 | 13.74 | 67.22 | 2.49 | 1.00 | 0.85 | 4.30 | 11.73 | 6.78 | 59.30 | 0.39 | 1.64 | 0.49 | 1.02 | 0.41 | 3.29 | 0.69 | 16.02 | 110.41 | 48.74 | 58.08 |
JZ-18 | 8.31 | 23.38 | 94.36 | 3.59 | 1.61 | 0.47 | 4.31 | 11.28 | 6.24 | 86.65 | 0.35 | 2.40 | 0.51 | 2.27 | 0.59 | 5.18 | 0.91 | 19.16 | 145.53 | 51.87 | 84.98 |
SLRS-5 4 | 232.07 | 280.95 | 52.92 | 214.58 | 37.88 | 7.93 | 31.88 | 3.98 | 22.71 | 4.07 | 12.33 | 1.61 | 10.05 | 1.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Z.; Wu, Q.; An, Y.; Jia, H.; Shen, Y. Anthropogenic Rare Earth Elements: Gadolinium in a Small Catchment in Guizhou Province, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 4052. https://doi.org/10.3390/ijerph16204052
Zhang J, Wang Z, Wu Q, An Y, Jia H, Shen Y. Anthropogenic Rare Earth Elements: Gadolinium in a Small Catchment in Guizhou Province, Southwest China. International Journal of Environmental Research and Public Health. 2019; 16(20):4052. https://doi.org/10.3390/ijerph16204052
Chicago/Turabian StyleZhang, Jue, Zhuhong Wang, Qixin Wu, Yanling An, Huipeng Jia, and Yuanyi Shen. 2019. "Anthropogenic Rare Earth Elements: Gadolinium in a Small Catchment in Guizhou Province, Southwest China" International Journal of Environmental Research and Public Health 16, no. 20: 4052. https://doi.org/10.3390/ijerph16204052
APA StyleZhang, J., Wang, Z., Wu, Q., An, Y., Jia, H., & Shen, Y. (2019). Anthropogenic Rare Earth Elements: Gadolinium in a Small Catchment in Guizhou Province, Southwest China. International Journal of Environmental Research and Public Health, 16(20), 4052. https://doi.org/10.3390/ijerph16204052