Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength
Abstract
:1. Background
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. FTIR Spectra
2.4. Data Analysis Method
3. Results
3.1. FTIR Spectra of Four Adsorbents Adsorbing Cd(II) Affected by pH
3.2. FTIR Spectra of Four Adsorbents Adsorbing Cd(II) Affected by Initial Cd(II) Concentration
3.3. FTIR Spectra of Four Adsorbents Adsorbing Cd(II) Affected by Ionic Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cui, X.Q.; Fang, S.Y.; Yao, Y.Q.; Li, T.Q.; Ni, Q.J.; Yang, X.E.; He, Z.L. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.B.; Gao, P.; Chu, G.; Pan, B.; Peng, J.H.; Xing, B.S. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wei, Y.X.; Cai, S.P.; Yu, L.; Zhong, Z.P.; Jin, B.S. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Sci. Total Environ. 2018, 618, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Singh, B. Removal of Ni(II) ions from aqueous solutions using modified rice straw in a fixed bed column. Bioresource Technol. 2013, 146, 519–524. [Google Scholar] [CrossRef]
- Wu, W.Y.; Yao, G.C.; Zhang, X.W.; Chen, Z.M.; Zhang, X.F.; Chen, D.Y. Adsorption behavior of modified rice straw to thorium. Nuclear Techniques 2015, 38, 7. [Google Scholar]
- Li, W.C.; Law, F.Y.; Chan, Y.H.M. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ. Sci. Pollut. Res. 2017, 24, 8903–8915. [Google Scholar] [CrossRef]
- Binod, P.; Sindhu, R.; Singhania, R.; Vikram, S.; Devi, L.; Nagalakshmi, S.; Kurien, N.; Sukumaran, R.; Pandey, A. Bioethanol production from rice straw: An overview. Bioresour. Technol. 2010, 101, 4767–4774. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, T.X.; Zhang, D. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard Mater. 2008, 153, 300–308. [Google Scholar] [CrossRef]
- Lin, C.; Luo, W.J.; Luo, T.T.; Zhou, Q.; Li, H.F.; Jing, L.R. A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism. J. Clean Prod. 2018, 196, 626–634. [Google Scholar] [CrossRef]
- Yang, X.D.; Wan, Y.S.; Zheng, Y.L.; He, F.; Yue, Z.B.; Huang, J.; Wang, H.L.; Ok, Y.S.; Jiang, Y.S.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Li, H.B.; Dong, X.L.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.S.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.; Lee, C.K.; Low, K.S.; Haron, M.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 2003, 50, 23–28. [Google Scholar] [CrossRef]
- Rungrodnimitchai, S. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M.; Gupta, V.K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 2011, 50, 13589–13613. [Google Scholar] [CrossRef]
- Nnaji, C.C.; Ebeagwu, C.J.; Ugwu, E.I. Physicochemical conditions for adsorption of lead from water by rice husk ash. BioRes 2017, 12, 799–818. [Google Scholar] [CrossRef]
- Rocha, C.G.; Zaia, D.A.M.; Alfaya, R.V.D.S.; Alfaya, A.A.D.S.A. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J. Hazard Mater. 2009, 166, 383–388. [Google Scholar] [CrossRef]
- Ye, H.P.; Zhu, Q.; Du, D.Y. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresource Technol. 2010, 101, 5175–5179. [Google Scholar] [CrossRef]
- Zheng, L.C.; Dang, Z.; Yi, X.Y.; Zhang, H. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J. Hazard Mater. 2010, 176, 650–656. [Google Scholar] [CrossRef]
- Pehlivan, E.; Altun, T.; Parlayici, Ş. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 2012, 135, 2229–2234. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Huang, Q.; Khan, S.; Liu, Y.J.; Liao, Z.N.; Li, G.; Ok, Y.S. Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol. Eng. 2016, 87, 240–245. [Google Scholar] [CrossRef]
- Park, J.H.; Wang, J.J.; Kim, S.H.; Cho, J.S.; Kang, S.W.; Delaune, R.D.; Han, K.J.; Seo, D.C. Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloid Surface A 2017, 533, 330–337. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard Mater. 2009, 164, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.; Freire, M.S.; González-Alvarez, J.; Antorrena, G. Equilibrium and kinetic modeling of the adsorption of Cd2+ ions onto chestnut shell. Desalination 2009, 249, 855–860. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M.; Höll, W.H. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. J. Hazard. Mater. 2009, 168, 1467–1475. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q.; Zhang, Q.P.; Liu, Q.C.; Li, Y.D.; Xiao, R. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Gao, L.Y.; Deng, J.H.; Huang, G.F.; Li, K.; Cai, K.Z.; Liu, Y.; Huang, F. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresource Technol. 2019, 272, 114–122. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.L.; Hu, H.Q. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ. Sci. Pollut. R. 2018, 25, 11875–11883. [Google Scholar] [CrossRef]
- Che, Z.A.A.; Naimah, I.; Fahmi, M.R.; Salsuwanda, S. Removal of Cu(II) from industrial effluents by citric acid modified rice straw. Bioremediation Sci. Technol. Res. 2014, 2, 23–28. [Google Scholar]
- Pap, S.; Radonić, J.; Trifunović, S.; Adamović, D.; Mihajlović, I.; Miloradov, M.V.; Sekulić, M.T. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J. Environ. Manage. 2016, 184, 297–306. [Google Scholar] [CrossRef]
- Nakbanpote, W.; Goodman, B.A.; Thiravetyan, P. Copper adsorption on rice husk derived materials studied by EPR and FTIR. Colloid Surface A 2007, 304, 7–13. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Dual role of biochars as adsorbents for aluminum: the effect of oxygen-containing organic components and scattering of silicate particles. Environ. Sci. Technol. 2013, 47, 8759–8768. [Google Scholar] [CrossRef] [PubMed]
- Zama, E.F.; Zhu, Y.G.; Reid, B.J.; Sun, G.X. The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. J. Clean Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, G.O.; Dessouki, H.A.; Ibrahim, S.S. Biosorption of Ni(II) and Cd(II) ions from aqueous solutions onto rice straw. Chem. Sci. J. 2010, 2010, 1–11. [Google Scholar] [CrossRef]
- Zheng, L.C.; Zhu, C.F.; Dang, Z.; Zhang, H.; Yi, X.Y.; Liu, C.Q. Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution. Carbohyd. Polym. 2012, 90, 1008–1015. [Google Scholar] [CrossRef]
- Ding, Y.; Jing, D.B.; Gong, H.L.; Zhou, L.B.; Yang, X.S. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technol. 2012, 114, 20–25. [Google Scholar] [CrossRef]
- Song, T.; Liang, J.S.; Bai, X.; Li, Y.; Wei, Y.N.; Huang, S.Q.; Dong, L.Y.; Qu, J.J.; Jin, Y. Biosorption of cadmium ions from aqueous solution by modified Auricularia Auricular matrix waste. J. Mol. Liq. 2017, 241, 1023–1031. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P.H.; Alexandre-Franco, M.F.; Gómez-Serrano, V.; Gong, H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 2007, 310, 57–73. [Google Scholar] [CrossRef]
- Leyva-Ramos, R.; Landin-Rodriguez, L.E.; Leyva-Ramos, S.; Medellin-Castillo, N.A. Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(II) from water solution. Chem. Eng. J. 2012, 180, 113–120. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination 2011, 267, 101–106. [Google Scholar] [CrossRef]
- Hsu, T.C.; Guo, G.L.; Chen, W.H.; Hwang, W.S. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technol. 2010, 101, 4907–4913. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Guo, X.Y.; Tian, Q.H. Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel. Desalination 2011, 275, 212–216. [Google Scholar] [CrossRef]
- Nasr, M.; Mahmoud, A.E.D.; Fawzy, M.; Radwan, A. Artificial intelligence modeling of cadmium(II) biosorption using rice straw. Appl. Water Sci. 2017, 7, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.J.; Liu, H.Y.; Yang, C.P. Effects of pretreatment methods of wheat straw on adsorption of Cd(II) from waterlogged paddy soil. Int. J. Environ. Res. Public Health 2019, 16, 205. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, Z.Y.; Han, R.; Meng, R.H.; Wang, H.T.; Lu, W.J. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere 2015, 134, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Asuquo, E.D.; Martin, A.D.; Nzerem, P. Evaluation of Cd(II) ion removal from aqueous solution by a low-cost adsorbent prepared from white yam (Dioscorea rotundata) waste using batch sorption. ChemEngineering 2018, 2, 35. [Google Scholar] [CrossRef]
- Vasudevan, P.; Padmavathy, V.; Dhingra, S.C. Biosorption of monovalent and divalent ions on baker’s yeast. Bioresource Technol. 2002, 82, 285–289. [Google Scholar] [CrossRef]
- Salmani, M.H.; Zarei, S.; Ehrampoush, M.H.; Danaie, S. Evaluations of pH and high ionic strength solution effect in cadmium removal by zinc oxide nanoparticles. J. Appl. Sci. Environ. Manage 2013, 17, 583–593. [Google Scholar]
- Zhao, J.S.; Fu, C.G.; Yang, Z.Y. Integrated process for isolation and complete utilization of rice straw components through sequential treatment. Chem. Eng. Comm. 2008, 195, 1176–1183. [Google Scholar] [CrossRef]
- Chen, Y.G.; Ye, W.M.; Yang, X.M.; Deng, F.Y.; He, Y. Effect of contact time, pH, and ionic strength on Cd(II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China. Environ. Earth Sci. 2011, 64, 329–336. [Google Scholar] [CrossRef]
- Baeyens, B.; Bradbury, M.H. A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements. J. Contam. Hydrol. 1997, 27, 199–222. [Google Scholar] [CrossRef]
- Wang, X.K.; Liu, X.P. Effect of pH and concentration on the diffusion of radiostrontium in compacted bentonite—A capillary experimental study. Appl. Radiat. Isot. 2004, 61, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
Positions (cm−1) | Spectral Assignments | References |
---|---|---|
3404~3452 | Free and intermolecular bonded hydroxyl groups | Vázquez et al. [23] Song et al. [3] |
2920~2924 | C–H stretching vibration of –CH2 | Vázquez et al. [23] Lin et al. [9] Saeed et al. [24] |
2852~2854 | C–H stretching vibration of –CH3 | Pap et al. [30] Park et al. [21] |
1689~1734 | C=O group of a carboxylic acid or its ester | Vázquez et al. [23] |
1603~1649 | C=C stretching of aromatic or benzene rings in lignin | Vázquez et al. [23] Lin et al. [9] |
1512 | N–H bending of secondary aromatic amines | Saeed et al. [24] Park et al. [21] |
1417~1427 | C–H deformation of –O–CH3 group from lignin | Pap et al. [30] Vázquez et al. [23] |
1020~1097 | C–O or C–O–C stretching of –O–CH3 group from lignin or Si–O stretching vibration | Zhu et al. [8] Rocha et al. [16] Zheng et al. [18] Nakbanpote et al. [31] |
795~804 | Si–O–Si symmetric stretching | Qian and Chen [32] |
451~467 | Si–O bending vibration | Rocha et al. [16] Qian and Chen [32] |
Treatmets | Initial pH Value | Final pH Value | qe (mg/g) | Peak Positions (cm−1) and Their Relative Intensities (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3404 | 2920 | 2852 | 1720 | 1637 | – | 1020 | – | 459 | ||||
Sp pH 2 | 2 | 0.61 | 2.2cC | 41.31aB | 1.40aB | 0.02cD | 0.57aC | 2.24aD | – | 44.62aC | – | 9.83cA |
Sp pH 4 | 4 | 2.24 | 4.7bD | 39.25bB | 1.30bB | 0.19aA | 0.34bC | 2.12bD | – | 38.13cC | – | 18.67aA |
Sp pH 9 | 9 | 4.63 | 11.3aD | 37.88cB | 1.25bB | 0.08bC | 0.11cC | 2.00cD | – | 43.79bC | – | 14.89bA |
3419 | 2922 | 2852 | – | 1620 | 1421 | 1080 | 804 | 467 | ||||
Sa pH 2 | 2 | 0.66 | 3.53cA | 26.71aC | 0.40bD | 0.13aB | – | 3.67aC | 0.00b | 61.35aA | 2.07a | 5.66cC |
Sa pH 4 | 4 | 3.54 | 16.3bA | 25.87bC | 0.64aC | 0.10bC | – | 3.55bC | 0.00bB | 61.04aA | 2.00ab | 6.80bC |
Sa pH 9 | 9 | 6.82 | 60.0aA | 22.77cC | 0.44bD | 0.13aB | – | 3.14cC | 2.67aB | 60.13bA | 1.98b | 8.75aB |
3419 | 2922 | 2852 | 1693 | 1605 | 1419 | 1097 | 796 | 463 | ||||
Sb pH 2 | 2 | 1.29 | 3.66cA | 23.31aD | 0.56bC | 0.06cC | 0.65aB | 4.25aB | 0.00c | 59.79aB | 4.31a | 7.06cB |
Sb pH 4 | 4 | 2.71 | 5.59bC | 21.77bD | 0.56bD | 0.15bB | 0.56bB | 4.06bB | 1.77bA | 59.34bB | 4.03b | 7.76bB |
Sb pH 9 | 9 | 4.86 | 12.7aC | 19.22cD | 0.79aC | 0.24aA | 0.14cB | 3.93cB | 3.73aA | 59.25bB | 3.53c | 7.97aC |
3415 | 2920 | 2852 | 1726 | 1633 | 1423 | 1051 | – | 451 | ||||
Ms pH 2 | 2 | 0.62 | 2.43cB | 56.21aA | 3.04bA | 0.19aA | 0.89aA | 4.97aA | 0.00b | 34.21aD | – | 0.00cD |
Ms pH 4 | 4 | 2.12 | 9.39bB | 54.49bA | 2.87cA | 0.09bC | 0.77bA | 4.57bA | 0.00bB | 33.91bD | – | 2.83aD |
Ms pH 9 | 9 | 5.31 | 31.9aB | 53.27cA | 3.88aA | 0.16aB | 0.40cA | 4.41cA | 2.06aC | 33.50cD | – | 2.00bD |
Treatments | C0 (mg/L) | qe (mg/g) | Peak Positions (cm−1) and Their Relative Intensities (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3452 | 2922 | 2852 | 1734 | 1649 | – | 1026 | – | – | |||
Sp C 0 | 0 | 0c | 47.58aB | 1.70bB | 0.05bC | 0.88a | 4.36aC | – | 45.44cC | – | – |
Sp C 200 | 200 | 3.11bC | 46.29bB | 2.16aB | 0.16aC | 0.55b | 4.23bC | – | 46.61bC | – | – |
Sp C 800 | 800 | 5.83aC | 46.24bB | 1.34cB | 0.05bD | 0.40c | 3.77cB | – | 48.20aC | – | – |
3448 | 2922 | 2852 | – | 1616 | 1427 | 1074 | 795 | 467 | |||
Sa C 0 | 0 | 0c | 21.93aD | 0.59bD | 0.15bB | – | 4.01aD | 2.49a | 63.20cA | 2.22a | 5.41a |
Sa C 200 | 200 | 44.5bA | 20.34bD | 0.59bD | 0.12bD | – | 2.28bD | 2.15b | 67.05bA | 2.16b | 5.30b |
Sa C 800 | 800 | 56.1aA | 20.12cD | 0.96aC | 0.86aB | – | 1.93cC | 1.92c | 70.11aB | 0.00c | 4.10c |
3444 | 2922 | 2852 | – | 1603 | 1417 | 1093 | 798 | 465 | |||
Sb C 0 | 0 | 0c | 23.80aC | 0.69cC | 0.13bB | – | 6.99aB | 3.26a | 53.63cB | 4.55a | 6.94a |
Sb C 200 | 200 | 5.32bB | 22.57bC | 1.02aC | 0.28aA | – | 6.68bB | 2.01b | 56.72bB | 4.16b | 6.58b |
Sb C 800 | 800 | 5.94aC | 21.32cC | 0.85bD | 0.15bC | – | 1.36cD | 0.00c | 71.28aA | 0.00c | 5.03c |
3444 | 2920 | 2854 | – | 1649 | – | 1066 | – | – | |||
Ms C 0 | 0 | 0c | 57.46aA | 2.85bA | 0.20cA | – | 9.00aA | – | 30.49bD | – | – |
Ms C 200 | 200 | 5.33bB | 57.21aA | 2.53cA | 0.25bB | – | 8.90bA | – | 31.11aD | – | – |
Ms C 800 | 800 | 7.39aB | 52.30bA | 7.57aA | 1.62aA | – | 8.67cA | – | 29.85cD | – | – |
Treatments | Ionic Strength (mg/L) | qe (mg/g) | Peak Positions (cm−1) and Their Relative Intensities (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3437 | 2922 | 2852 | 1732 | 1641 | – | 1026 | – | – | |||
Sp IS 0 | 0 | 12.6aD | 56.17cB | 2.11bB | 0.22aB | 1.23aA | 3.29cC | – | 36.98aC | – | – |
Sp IS 0.2 | 0.2 | 4.5cC | 56.48bB | 1.86cA | 0.10cA | 1.16bA | 3.82aC | – | 36.58bC | – | – |
Sp IS 0.6 | 0.6 | 4.8bD | 58.89aA | 2.24aB | 0.19bB | 1.06cA | 3.61bC | – | 34.02cC | – | – |
3425 | 2924 | 2852 | – | 1622 | 1423 | 1088 | 795 | 465 | |||
Sa IS 0 | 0 | 48.8aA | 23.35cD | 0.19aD | 0.06aD | – | 2.93cD | 0.67b | 61.53bA | 2.65c | 8.63a |
Sa IS 0.2 | 0.2 | 25.6bA | 25.88aC | 0.07bC | 0.02bB | – | 3.64bD | 0.63c | 59.97cA | 2.82a | 6.96b |
Sa IS 0.6 | 0.6 | 15.4cA | 24.00bD | 0.04cD | 0.03bD | – | 3.75aB | 0.76a | 62.51aB | 2.74b | 6.16c |
3423 | 2924 | 2854 | 1689 | 1603 | – | 1093 | 800 | 465 | |||
Sb IS 0 | 0 | 14.5aB | 24.22cC | 0.43aC | 0.09bC | 0.14aB | 5.10bB | – | 56.67cB | 3.28a | 8.06a |
Sb IS 0.2 | 0.2 | 4.7cC | 25.73bD | 0.09cC | 0.11aA | 0.14aB | 5.23aB | – | 59.45bB | 3.19b | 6.06b |
Sb IS 0.6 | 0.6 | 5.4bB | 31.62aC | 0.11bC | 0.11aC | 0.00bB | 1.24cD | – | 64.48aA | 0.00c | 2.43c |
3423 | 2922 | 2852 | 1724 | 1641 | – | 1055 | – | – | |||
Ms IS 0 | 0 | 13.7aC | 56.98bA | 2.53aA | 0.38aA | 0.13aB | 7.33bA | – | 32.66aD | – | – |
Ms IS 0.2 | 0.2 | 7.2bB | 59.06aA | 1.50bB | 0.11cA | 0.11bC | 7.29bA | – | 31.94bD | – | – |
Ms IS 0.6 | 0.6 | 5.1cC | 57.09bB | 2.56aA | 0.22bA | 0.00cB | 8.13aA | – | 31.99bD | – | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, W.; Yin, X.; Wang, N.; Yuan, S.; Yan, T.; Qu, S.; Yang, X.; Chen, D. Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength. Int. J. Environ. Res. Public Health 2019, 16, 4129. https://doi.org/10.3390/ijerph16214129
Wang S, Li W, Yin X, Wang N, Yuan S, Yan T, Qu S, Yang X, Chen D. Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength. International Journal of Environmental Research and Public Health. 2019; 16(21):4129. https://doi.org/10.3390/ijerph16214129
Chicago/Turabian StyleWang, Shuai, Wanhong Li, Xinhua Yin, Nan Wang, Shuai Yuan, Ting Yan, Shuang Qu, Xiangbo Yang, and Dianyuan Chen. 2019. "Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength" International Journal of Environmental Research and Public Health 16, no. 21: 4129. https://doi.org/10.3390/ijerph16214129
APA StyleWang, S., Li, W., Yin, X., Wang, N., Yuan, S., Yan, T., Qu, S., Yang, X., & Chen, D. (2019). Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength. International Journal of Environmental Research and Public Health, 16(21), 4129. https://doi.org/10.3390/ijerph16214129