Regarding the Yin and Yang of Precision Cancer- Screening and Treatment: Are We Creating a Neglected Majority?
Abstract
:1. Introduction
2. Materials and Methods
2.1. How Did We Get to be So Yang Focused
2.2. Why Should We Care about The Yin-Side?
2.3. Population-Based Family History Screening
2.4. Germline Testing for Hereditary Cancer Syndromes
2.5. Targeted Cancer Therapies
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Owens, D.K.; Davidson, K.W.; Krist, A.H.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Doubeni, C.A.; Epling, J.W.; Kubik, M., Jr.; Force USPST; et al. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2019, 322, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.R.M.; Maitra, A. The Status and Impact of Clinical Tumor Genome Sequencing. Annu. Rev. Genom. Hum. Genet. 2019. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, K.W.; Alexander, M.; Bernhardt, B.A.; Calman, N.; Carey, D.J.; Cavallari, L.H.; Field, J.R.; Hauser, D.; Junkins, H.A.; Levin, P.A.; et al. The IGNITE network: A model for genomic medicine implementation and research. BMC Med. Genom. 2016, 9, 1. [Google Scholar] [CrossRef]
- Yanes, T.; Willis, A.M.; Meiser, B.; Tucker, K.M.; Best, M. Psychosocial and behavioral outcomes of genomic testing in cancer: A systematic review. Eur. J. Hum. Genet. 2019, 27, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Haga, S.B.; Mills, R.; Pollak, K.I.; Rehder, C.; Buchanan, A.H.; Lipkus, I.M.; Crow, J.H.; Datto, M. Developing patient-friendly genetic and genomic test reports: Formats to promote patient engagement and understanding. Genome Med. 2014, 6, 58. [Google Scholar] [CrossRef]
- Horton, R. Offline: In defence of precision public health. Lancet 2018, 392, 1504. [Google Scholar] [CrossRef] [Green Version]
- Chaiken, S. Heuristic versus systematic information processing and the use of source versus message cues in persuasion. J. Personal. Soc. Psychol. 1980, 39, 752. [Google Scholar] [CrossRef]
- Miller, S.M.; Schnoll, R.A. When seeing is feeling: A cognitive-emotional approach to coping with health stress. In Handbook of Emotions; Guilford Press: New York City, NY, USA, 2000; pp. 538–557. [Google Scholar]
- Butterfield, R.M.; Evans, J.P.; Rini, C.; Kuczynski, K.J.; Waltz, M.; Cadigan, R.J.; Goddard, K.A.B.; Muessig, K.R.; Henderson, G.E. Returning negative results to individuals in a genomic screening program: Lessons learned. Genet. Med. 2019, 21, 409–416. [Google Scholar] [CrossRef]
- Joseph, G.; Kaplan, C.; Luce, J.; Lee, R.; Stewart, S.; Guerra, C.; Pasick, R. Efficient identification and referral of low-income women at high risk for hereditary breast cancer: A practice-based approach. Public Health Genom. 2012, 15, 172–180. [Google Scholar] [CrossRef]
- Brannon Traxler, L.; Martin, M.L.; Kerber, A.S.; Bellcross, C.A.; Crane, B.E.; Green, V.; Matthews, R.; Paris, N.M.; Gabram, S.G. Implementing a screening tool for identifying patients at risk for hereditary breast and ovarian cancer: A statewide initiative. Ann. Surg. Oncol. 2014, 21, 3342–3347. [Google Scholar] [CrossRef]
- Guan, Y.; Condit, C.M.; Escoffery, C.; Bellcross, C.A.; McBride, C.M. Do Women who Receive a Negative BRCA1/2 Risk Result Understand the Implications for Breast Cancer Risk? Public Health Genom. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Leventhal, H.; Benyamini, Y.; Brownlee, S.; Diefenbach, M.; Leventhal, E.A.; Patrick-Miller, L.; Robitaille, C. Illness representations: Theoretical foundations. Percept. Health Illn. 1997, 2, 19–46. [Google Scholar]
- Guan, Y.; Nehl, E.; Pencea, I.; Condit, C.M.; Escoffery, C.; Bellcross, C.A.; McBride, C.M. Willingness to decrease mammogram frequency among women at low risk for hereditary breast cancer. Sci. Rep. 2019, 9, 9599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.S.; McBride, C.M.; Guan, Y. Misperception of cancer risk and its association with information sharing motives among women at low risk for BRCA mutations. 2019. under review. [Google Scholar]
- Sayani, A. Inequities in genetic testing for hereditary breast cancer: Implications for public health practice. J. Community Genet. 2019, 10, 35–39. [Google Scholar] [CrossRef]
- Economopoulou, P.; Dimitriadis, G.; Psyrri, A. Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treat. Rev. 2015, 41, 1–8. [Google Scholar] [CrossRef]
- Stanislaw, C.; Xue, Y.; Wilcox, W.R. Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol. Med. 2016, 13, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Reyna, V.F.; Lloyd, F.J.; Whalen, P. Genetic testing and medical decision making. Arch. Int. Med. 2001, 161, 2406–2408. [Google Scholar] [CrossRef]
- Lerman, C.; Hughes, C.; Croyle, R.T.; Main, D.; Durham, C.; Snyder, C.; Bonney, A.; Lynch, J.F.; Narod, S.A.; Lynch, H.T. Prophylactic surgery decisions and surveillance practices one year following BRCA1/2 testing. Prev. Med. 2000, 31, 75–80. [Google Scholar] [CrossRef]
- Michie, S.; Smith, J.A.; Senior, V.; Marteau, T.M. Understanding why negative genetic test results sometimes fail to reassure. Am. J. Med. Genet. A 2003, 119A, 340–347. [Google Scholar] [CrossRef]
- Michie, S.; Weinman, J.; Miller, J.; Collins, V.; Halliday, J.; Marteau, T.M. Predictive genetic testing: High risk expectations in the face of low risk information. J. Behav. Med. 2002, 25, 33–50. [Google Scholar] [CrossRef]
- O’Neill, S.C.; Rini, C.; Goldsmith, R.E.; Valdimarsdottir, H.; Cohen, L.H.; Schwartz, M.D. Distress among women receiving uninformative BRCA1/2 results: 12-month outcomes. Psychooncology 2009, 18, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.; Gomez-Garcia, E.; Oosterwijk, J.C.; Menko, F.H.; Stoel, R.D.; van Asperen, C.J.; Jansen, A.M.; Stiggelbout, A.M.; Tibben, A. Opening the psychological black box in genetic counseling. The psychological impact of DNA testing is predicted by the counselees’ perception, the medical impact by the pathogenic or uninformative BRCA1/2-result. Psychooncology 2012, 21, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Haroun, I.; Graham, T.C.; Eisen, A.; Kiss, A.; Warner, E. Variants of unknown significance in BRCA testing: Impact on risk perception, worry, prevention and counseling. Ann. Oncol. 2013, 24 (Suppl. 8), viii69–viii74. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.L.; Cerrato, F.; Bennett, R.L.; Jarvik, G.P. Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: Variant reclassification and surgical decisions. Genet. Med. 2011, 13, 998–1005. [Google Scholar] [CrossRef]
- Makhnoon, S.; Garrett, L.T.; Burke, W.; Bowen, D.J.; Shirts, B.H. Experiences of patients seeking to participate in variant of uncertain significance reclassification research. J. Community Genet. 2019, 10, 189–196. [Google Scholar] [CrossRef]
- Otten, E.; Plantinga, M.; Birnie, E.; Verkerk, M.A.; Lucassen, A.M.; Ranchor, A.V.; Van Langen, I.M. Is there a duty to recontact in light of new genetic technologies? A systematic review of the literature. Genet. Med. 2015, 17, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Nanda, R.; Schumm, L.P.; Cummings, S.; Fackenthal, J.D.; Sveen, L.; Ademuyiwa, F.; Cobleigh, M.; Esserman, L.; Lindor, N.M.; Neuhausen, S.L.; et al. Genetic testing in an ethnically diverse cohort of high-risk women: A comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 2005, 294, 1925–1933. [Google Scholar] [CrossRef]
- Pal, T.; Bonner, D.; Kim, J.; Monteiro, A.N.; Kessler, L.; Royer, R.; Narod, S.A.; Vadaparampil, S.T. Early onset breast cancer in a registry-based sample of African-american women: BRCA mutation prevalence, and other personal and system-level clinical characteristics. Breast. J. 2013, 19, 189–192. [Google Scholar] [CrossRef]
- Hall, M.J.; Olopade, O.I. Disparities in genetic testing: Thinking outside the BRCA box. J. Clin. Oncol. 2006, 24, 2197–2203. [Google Scholar] [CrossRef]
- Haga, S.B.; Zhao, J.Q. Stakeholder views on returning research results. Adv. Genet. 2013, 84, 41–81. [Google Scholar] [CrossRef]
- Partridge, A.H.; Winer, E.P. Informing clinical trial participants about study results. JAMA 2002, 288, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Partridge, A.H.; Wong, J.S.; Knudsen, K.; Gelman, R.; Sampson, E.; Gadd, M.; Bishop, K.L.; Harris, J.R.; Winer, E.P. Offering participants results of a clinical trial: Sharing results of a negative study. Lancet 2005, 365, 963–964. [Google Scholar] [CrossRef]
- Manahan, E.R.; Kuerer, H.M.; Sebastian, M.; Hughes, K.S.; Boughey, J.C.; Euhus, D.M.; Boolbol, S.K.; Taylor, W.A. Consensus Guidelines on GeneticTesting for Hereditary Breast Cancer from the American Society of Breast Surgeons. Ann. Surg. Oncol. 2019, 26, 3025–3031. [Google Scholar] [CrossRef]
- Jakob, J.A.; Bassett, R.L.; Ng, C.S., Jr.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.W.; Kim, Y.S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: A meta-analysis. Br. J. Dermatol. 2011, 164, 776–784. [Google Scholar] [CrossRef]
- Wilson, F.R.; Coombes, M.E.; Brezden-Masley, C.; Yurchenko, M.; Wylie, Q.; Douma, R.; Varu, A.; Hutton, B.; Skidmore, B.; Cameron, C. Herceptin(R) (trastuzumab) in HER2-positive early breast cancer: A systematic review and cumulative network meta-analysis. Syst. Rev. 2018, 7, 191. [Google Scholar] [CrossRef]
- Tzieropoulos, H.; de Peralta, R.G.; Bossaerts, P.; Gonzalez Andino, S.L. The impact of disappointment in decision making: Inter-individual differences and electrical neuroimaging. Front. Hum. Neurosci. 2011, 4, 235. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.S.; Gornick, M.C.; Le, L.Q.; Bartnik, N.J.; Zikmund-Fisher, B.J.; Chinnaiyan, A.M.; Team M-OS. Next-generation sequencing in precision oncology: Patient understanding and expectations. Cancer Med. 2019, 8, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Fiore, R.N.; Goodman, K.W. Precision medicine ethics: Selected issues and developments in next-generation sequencing, clinical oncology, and ethics. Curr. Opin. Oncol. 2016, 28, 83–87. [Google Scholar] [CrossRef]
Precision Screening | Results/Meaning | Implications | Recommendations |
---|---|---|---|
Population family history-based screening | Negative [i.e., individual’s family history is not suggestive of hereditary cancers] | • Low risk for hereditary cancers • Average or increased cancer risk based on other personal factors | • Standard prevention based on other personal factors |
Germline genetic testing | True negative [i.e., individual has no cancer predisposing gene mutation in a family where another member(s) has tested positive] | • Low risk for hereditary cancers • Average or increased cancer risks based on other personal factors | • Standard prevention based on other personal factors |
Uninformative [i.e., individual has no cancer predisposing gene mutation in a family where another member(s) has tested negative or not been tested] | • Unknown risk for hereditary cancers • Individuals may have an inherited genetic abnormality | • More extensive genetic testing • Standard prevention based on other personal factors | |
Variant of uncertain significance [i.e., individual has a gene change but its relationship with cancer is unclear] | • Unknown risk for hereditary cancers | • Periodic follow up with possible variant re-classification • Standard prevention based on other personal factors | |
Tumor testing | Negative or uninformative [i.e., a gene mutation associated with targeted cancer therapy benefit is not found in the tumor] | • Specific precision-based treatment not indicated | • Standard treatment |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McBride, C.M.; Guan, Y.; Hay, J.L. Regarding the Yin and Yang of Precision Cancer- Screening and Treatment: Are We Creating a Neglected Majority? Int. J. Environ. Res. Public Health 2019, 16, 4168. https://doi.org/10.3390/ijerph16214168
McBride CM, Guan Y, Hay JL. Regarding the Yin and Yang of Precision Cancer- Screening and Treatment: Are We Creating a Neglected Majority? International Journal of Environmental Research and Public Health. 2019; 16(21):4168. https://doi.org/10.3390/ijerph16214168
Chicago/Turabian StyleMcBride, Colleen M., Yue Guan, and Jennifer L. Hay. 2019. "Regarding the Yin and Yang of Precision Cancer- Screening and Treatment: Are We Creating a Neglected Majority?" International Journal of Environmental Research and Public Health 16, no. 21: 4168. https://doi.org/10.3390/ijerph16214168
APA StyleMcBride, C. M., Guan, Y., & Hay, J. L. (2019). Regarding the Yin and Yang of Precision Cancer- Screening and Treatment: Are We Creating a Neglected Majority? International Journal of Environmental Research and Public Health, 16(21), 4168. https://doi.org/10.3390/ijerph16214168