Do Compactness and Poly-Centricity Mitigate PM10 Emissions? Evidence from Yangtze River Delta Area
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area and Data
2.1.1. Study Area: YRD Area
2.1.2. Data
2.2. Measuring Poly-Centricity and Compactness
2.2.1. Measuring Poly-Centricity
2.2.2. Measuring Compact Urban Form
Urban Density
Jobs-Housing Balance
Urban Centralization
2.3. The Regression Models
3. Results
3.1. OLS and SDM Regressions Results for PM10
3.2. SDM Results for PM10
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, G. PM2.5 opened a door to public participation addressing environmental challenges in China. Environ. Pollut. 2015, 197, 313–315. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Yu, D. Characterizing spatiotemporal patterns of air pollution in China: A multiscale landscape approach. Ecol. Indic. 2017, 76, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- She, Q.; Peng, X.; Xu, Q.; Liu, M. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China (MEP). Analysis Report on the State of the Environment in China; Ministry of Ecology and Environment: Beijing, China, 2017.
- Wang, H.J.; Chen, H.P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmos. Chem. Phys. 2016, 16, 4205–4211. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2016, 53, 2607–2623. [Google Scholar] [CrossRef]
- Grote, M.; Williams, I.; Preston, J.; Kemp, S. Including congestion effects in urban road traffic CO2 emissions modelling: Do Local Government Authorities have the right options? Transp. Res. Part D Transp. Environ. 2016, 43, 95–106. [Google Scholar] [CrossRef]
- Engelfriet, L.; Koomen, E. The impact of urban form on commuting in large Chinese cities. Transportation 2018, 45, 1269–1295. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, T.; He, Z.; Wang, R. Urban Spatial Structure and Motorization in China. J. Reg. Sci. 2015, 57, 470–486. [Google Scholar] [CrossRef]
- Li, S.J.; Liu, Y.Y.; Purevjav, A.O.; Yang, L. Does subway expansion improve air quality? J. Environ. Econ. Manag. 2019, 96, 213–235. [Google Scholar] [CrossRef]
- OECD. Compact City Policies: A Comparative Assessment; OECD Green Growth Studies; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Rodríguez, M.C.; Laura, D.C.; Walid, O. Air Pollution and Urban Structure Linkages: Evidence from European Cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Muñiz, I.; Garcia-López, M.À. Urban form and spatial structure as determinants of the ecological footprint of commuting. Transp. Res. Part D Transp. Environ. 2019, 67, 334–350. [Google Scholar] [CrossRef]
- Borrego, C.; Helena, M.; Oxana, T.; Salmim, L.; Alexandra, M.; Ana, I.M. How Urban Structure Can Affect City Sustainability from an Air Quality Perspective. Environ. Model. Softw. 2006, 21, 461–467. [Google Scholar] [CrossRef]
- Frank, L.D.; James, F.S.; Terry, L.C.; James, E.C.; Brian, E.S.; William, B. Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Kahyaoğlu-Koračin, J.; Bassett, S.D.; Mouat, D.A.; Gertler, A.W. Application of a Scenario-Based Modeling System to Evaluate the Air Quality Impacts of Future Growth. Atmos. Environ. 2009, 43, 1021–1028. [Google Scholar] [CrossRef]
- Bandeira, J.M.; Margarida, C.; Coelho, M.E.S.; Richard, T.; Carlos, B. Impact of Land Use on Urban Mobility Patterns, Emissions and Air Quality in a Portuguese Medium-Sized City. Sci. Total Environ. 2011, 409, 1154–1163. [Google Scholar] [CrossRef]
- Ewing, R.; Rolf, P.; Don, C. Measuring Sprawl and Its Transportation Impacts. Transp. Res. Rec. 2003, 1831, 175–183. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, B.; Peng, Z.R. Investigating the relationship between air pollution variation and urban form. Build. Environ. 2019, 147, 559–568. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wu, J.G.; Yu, D.Y.; Ma, Q. The relationship between urban form and air pollution depends on seasonality and city size. Environ. Sci. Pollut. Res. 2018, 25, 15554–15567. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Y.; Huang, Y.; Hong, S.J.; Huang, L.J. Exploring the association between urban form and air quality in China. J. Plan. Educ. Res. 2018, 38, 413–426. [Google Scholar] [CrossRef]
- Bray, D. Social Space and Governance in Urban China: The Danwei System from Origins to Reform; Stanford University Press: Stanford, CA, USA, 2005. [Google Scholar]
- Chai, Y. Danwei-Centered Activity Space in Chinese Cities—A Case Study of Lanzhou. Geogr. Res. 1996, 15, 30–38. [Google Scholar]
- Feng, J.; Dijst, M.; Wissink, B.; Prillwitz, J. Understanding mode choice in the Chinese context: The case of Nanjing metropolitan area. Tijdschr. Econ. Soc. Geogr. 2014, 105, 315–330. [Google Scholar] [CrossRef]
- Ta, N.; Chai, Y.; Zhang, Y.; Sun, D.S. Understanding job-housing relationship and commuting pattern in Chinese cities: Past, present and future. Transp. Res. Part D Transp. Environ. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Cheng, H.; Shaw, D. Polycentric development practice in master planning: The case of China. Int. Plan. Stud. 2018, 23, 163–179. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Wang, X. Does polycentric and compact development alleviate urban traffic congestion? A case study of 98 Chinese cities. Cities 2019, 88, 100–111. [Google Scholar] [CrossRef]
- Ewing, R.; Tian, G.; Lyons, T. Does compact development increase or reduce traffic congestion. Cities 2018, 72, 94–101. [Google Scholar] [CrossRef]
- Gordon, P.; Wong, H.L. The cost of urban sprawl: Some new evidence. Environ. Plan. A 1985, 17, 661–666. [Google Scholar] [CrossRef]
- Susilo, Y.O.; Maat, K. The influence of built environment to the trends in commuting journeys in the Netherlands. Transportation 2007, 34, 589–609. [Google Scholar] [CrossRef]
- Meijers, E. Summing small cities does not make a large city: Polycentric urban regions and the provision of cultural, leisure and sports amenities. Urban Stud. 2008, 45, 2323–2342. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial panel models. In Handbook of Regional Science; Springer: Berlin, Heidelberg, 2014. [Google Scholar]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Zhou, J.; Calthorpe, P.; Guo, J.; Yao, Z.; et al. Energy use of, and CO2 emissions from China’s urban passenger transportation sector-carbon mitigation scenarios upon the transportation mode choices. Transp. Res. Part A 2013, 53, 53–67. [Google Scholar] [CrossRef]
- Xiao, H.J.; Duan, Z.Y.; Zhou, Y.; Zhang, N.; Shan, Y.L.; Lin, X.Y.; Liu, G.S. CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Appl. Energy 2019, 251, 113–384. [Google Scholar] [CrossRef]
- Hu, C.; Griffis, T.J.; Liu, S.; Xiao, W. Anthropogenic methane emission and its partitioning for the Yangtze River Delta region of China. J. Geophys. Res. Biogeosci. 2019. [Google Scholar] [CrossRef]
- Wu, D.; Wu, X.J.; Li, F.; Tan, H.B.; Chen, J.; Cao, Z.Q.; Sun, X.; Sun, H.; Li, H.Y. Spatial and temporal variation of haze during 1951–2005 in Chinese mainland. Acta Meteorol. Sin. 2010, 68, 680–688. [Google Scholar]
- Yu, Y.; Wang, J.; Yu, J.; Zhang, C.R. Spatial and Temporal Distribution Characteristics of PM 2.5 and PM 10 in the Urban Agglomeration of China’s Yangtze River Delta, China. Pol. J. Environ. Stud. 2019, 28, 445–452. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, C.; Yu, S. Temporal and spatial variation for vertical column density of tropospheric NO2 over the Yangtze River Delta from 2005 to 2013. J. Zhejiang A F Univ. 2015, 32, 691–700. (In Chinese) [Google Scholar]
- Etyemezian, V.; Kuhns, H.; Gillies, J.; Chow, J.; Hendrickson, K.; McGown, M.; Pitchford, M. Vehicle-based road dust emission measurement (III): Effect of speed, traffic volume, location, and season on PM10 road dust emissions in the Treasure Valley, ID. Atmos. Environ. 2003, 37, 4583–4593. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Gidhagen, L. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 2007, 127, 477–487. [Google Scholar]
- Bai, Z.; Han, J.; Azzi, M. Insights into measurements of ambient air PM2.5 in China. Trends Environ. Anal. Chem. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Anas, A.; Arnott, R.; Small, K.A. Urban spatial structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
- Lee, B.; Gordon, P. Urban spatial structure and economic growth in US metropolitan areas. In Proceedings of the 46th Annual Meetings of the Western Regional Science Association, Newport Beach, CA, USA, 21–24 February 2007. [Google Scholar]
- Mills, E.S. Studies in the Structure of the Urban Economy; John Hopkins University Press: Baltimore, MD, USA, 1972. [Google Scholar]
- Muth, R.F. Cities and Housing; The Spatial Pattern of Urban Residential Land Use; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Lefe’vre, B. Urban Transport Energy Consumption: Determinants and Strategies for Its Reduction. Published on Sapiens. 2009. Available online: https://sapiens.revues.org/914 (accessed on 20 February 2016).
- Gordon, P.; Kumar, A.; Richardson, H.W. The influence of metropolitan spatial structure on commuting time. J. Urban Econ. 1989, 26, 138–151. [Google Scholar] [CrossRef]
- Levinson, D.M.; Kumar, A. The rational locator: Why travel times have remained stable. J. Am. Plan. Assoc. 1994, 60, 319–332. [Google Scholar] [CrossRef]
- Handy, S. Methodologies for exploring the link between urban form and travel behaviour. Transp. Res. Part D Transp. Environ. 1996, 1, 151–165. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Amindarbari, R. Measuring Growth and Change in East-Asian Cities: Progress Report on Urban form and Land Use Measures; SUTD City Form Lab: Singapore, 2012. [Google Scholar]
- Limtanakool, N.; Schwanen, T.; Dijst, M. Developments in the Dutch urban system on the basis of flows. Reg. Stud. 2009, 43, 179–196. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R. A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Dunphy, R.T.; Brett, D.L.; Rosenbloom, S.; Bald, A. Moving Beyond Gridlock: Traffic and Development; ULI-Urban Land Institute: Washington, DC, USA, 1997. [Google Scholar]
- Newman, P.W.G.; Kenworthy, J.R. Gasoline consumption and cities: A comparison of US cities with a global survey. J. Am. Plan. Assoc. 1989, 55, 24–37. [Google Scholar] [CrossRef]
- Schwanen, T.; Dieleman, F.M.; Dijst, M. Travel behaviour in Dutch monocentric and policentric urban systems. J. Transp. Geogr. 2001, 9, 173–186. [Google Scholar] [CrossRef]
- Levinson, D.M.; Kumar, A. Density and the journey to work. Growth Chang. 1997, 28, 147–172. [Google Scholar] [CrossRef]
- Ewing, R.; Deanna, M.; Li, S.C. Land Use Impacts on Trip Generation Rates. Transp. Res. Rec. 1996, 1518, 1–6. [Google Scholar] [CrossRef]
- Sun, X.; Wilmot, C.G.; Kasturi, T. Household Travel, Household Characteristics, and Land Use: An Empirical Study from the 1994 Portland Activity-based Travel Survey. Transp. Res. Rec. 1998, 1617, 10–17. [Google Scholar] [CrossRef]
- Torrens, P.M. A toolkit for measuring sprawl. Appl. Spat. Anal. 2008, 1, 5–36. [Google Scholar] [CrossRef]
- Baumont, C.; Ertur, C.; Gallo, J. Spatial analysis of employment and population density: The case of the agglomeration of Dijon. Geogr. Anal. 1999, 36, 146–176. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Moghadam, A.S.; Soltani, A.; Parolin, B.; Aliabadi, M. Analysing the space-time dynamics of urban structure change using employment density and distribution data. Cities 2018, 81, 203–213. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.; Weng, J.H.; Weng, J.H.; Gao, Y.X. Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis. Energy 2016, 114, 1214–1223. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, W. Environmental regulation, green innovation, and industrial green development: An empirical analysis based on the Spatial Durbin model. Sustainability 2018, 10, 223. [Google Scholar] [CrossRef]
- Cervero, R. Jobs housing balancing and regional mobility. J. Am. Plan. Assoc. 1989, 55, 136–150. [Google Scholar] [CrossRef]
- Cervero, R.; Wu, K.L. Polycentrism, commuting, and residential location in the San Francisco Bay area. Environ. Plan. A. 1997, 29, 865–886. [Google Scholar] [CrossRef]
- Parolin, B. Employment centers and the journey to work in Sidney: 1981–2001. City Econ. 2004, 30, 1533–1575. [Google Scholar]
- Alpkokin, P.; Cheung, C.; Black, J.; Hayashi, Y. Dynamics of clustered employment growth and its impacts on commuting patterns in rapidly developing cities. Transp. Res. Part A Policy Pract. 2008, 42, 427–444. [Google Scholar] [CrossRef]
- Næss, P.; Sandberg, S.L. Workplace location, modal split and energy use for commuting trips. Urban Stud. 1996, 33, 557–580. [Google Scholar] [CrossRef]
- Glaeser, E.; Khan, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
Framework | Measures | Significance | |
---|---|---|---|
Compactness | Urban Density a | Average residential density (PD) | High average residential density suggests that a compact city |
Jobs-housing balance a | Jobs-housing balance index (JBR) | High jobs-housing balance reflects a compact urban form | |
Urban centralization a | Centralized index (CBD) | High degree of urban centralization means that a compact city | |
Poly-centricity | Activity centers a | The number of centers (DZN) | More centers suggest a polycentric city |
Polycentric cluster a | Polycentric-clustered index (DZI) | High polycentric-clustered index reflects a polycentric city | |
Population distribution between centers (SCS) | More balanced population distribution among centers reflects a polycentric city |
Variables (Unit) | Minimum | Maximum | Mean | Standard Deviation | Data Sources |
---|---|---|---|---|---|
PM (mg/m3) | 0.05 | 0.137 | 0.088 | 0.0163 | Report on the State of the Environment of YRD cities |
PO (ten thousand persons) | 44.76 | 2425.68 | 402.9253 | 535.4233 | The number of districts, residents, employments, private car ownerships at the district level and at the city level was from a statistical yearbook of YRD cities |
COS (ten thousand vehicles) | 4.079 | 201.5554 | 66.6280 | 55.5321 | |
JBR (-) | 0.9674 | 9.8788 | 3.6055 | 2.0370 | |
CBD (%) | 0.1176 | 1.1020 | 0.3898 | 0.1953 | |
SCS (%) | 0 | 0.8131 | 0.2743 | 0.2796 | |
DZN (-) | 1 | 8 | 2.0451 | 1.5888 | |
DZI (-) | 0 | 3.3193 | 0.5931 | 0.7373 | |
PD (persons/km2) | 263 | 10,004 | 1930 | 2065 |
Ln PO | Ln COS | Ln JBR | Ln CBD | Ln SCS | Ln DZN | Ln DZI | Ln PD | |
---|---|---|---|---|---|---|---|---|
Ln PO | 1.0000 | |||||||
Ln COS | 0.8856 | 1.0000 | ||||||
Ln JBR | 0.6235 | 0.5200 | 1.0000 | |||||
Ln CBD | 0.5069 | 0.4235 | 0.2820 | 1.0000 | ||||
Ln SCS | −0.6582 | −0.5517 | −0.4062 | −0.0235 | 1.0000 | |||
Ln DZN | 0.4234 | 0.2987 | 0.1878 | 0.0663 | −0.5827 | 1.0000 | ||
Ln DZI | −0.3970 | −0.3378 | −0.3177 | −0.1141 | 0.4776 | 0.2964 | 1.0000 | |
Ln PD | 0.2682 | 0.1242 | 0.1330 | 0.2710 | −0.2863 | 0.3192 | −0.0318 | 1.0000 |
Independent Variable | Dependent Variable (Natural log PM10) | |||||||
---|---|---|---|---|---|---|---|---|
OLS(1) | SDM(1a) | OLS(2) | SDM(2a) | OLS(3) | SDM(3a) | OLS(4) | SDM(4a) | |
Constant | 9.0250 (1.68)* | 18.1499 (3.99)*** | 9.8983 (1.80)* | 20.0873 (3.95)** | 19.9759 (3.22)*** | 27.900 (4.85)*** | −25.0033 (−2.08)** | 0.0742 (0.01) |
PO | −0.3061 (−3.94)*** | −0.4327 (−5.69)*** | −0.1157 (−1.57) | −0.3379 (−3.62)*** | −0.16667 (−1.63) | −0.4204 (−3.43)*** | −0.0920 (−0.88) | −0.3639 (−3.91)*** |
COS | 0.2162 (3.90)*** | 0.1272 (2.52)** | 0.1505 (2.61)** | 0.1027 (1.99)** | 0.1629 (2.65)*** | 0.1116 (2.06)** | 0.5671 (4.86)*** | 0.3446 (3.59)*** |
PD | −4.6379 (−2.56)** | −5.6953 (−10.24)*** | −3.3747 (−1.87)* | −5.1400 (−4.94)*** | −3.0788 (−1.58) | −5.2961 (−5.83)*** | −3.9704 (−2.17)** | −5.6286 (−9.35)*** |
JBR | −0.0566 (−1.69)* | −0.0760 (−2.47)** | −0.0736 (−2.09)** | −0.0839 (−2.62)*** | −0.0804 (−2.09)** | −0.0886 (−2.95)*** | −0.0874 (−2.49)** | −0.0922 (−4.13)*** |
CBD | 0.2105 (4.11)*** | 0.3285 (5.62)*** | 0.1496 (3.32)*** | 0.2982 (5.00)*** | 0.1636 (2.73)*** | 0.3334 (5.11)*** | 0.1352 (2.22)** | 0.3144 (5.50)*** |
DZN | 4.0240 (4.35)*** | 2.1791 (2.01)** | ||||||
DZI | 0.1380 (2.73)*** | 0.0712 (1.25) | ||||||
SCS | 0.0053 (0.06) | 0.0440 (0.58) | 0.6959 (3.75)*** | 0.3561 (2.69)*** | ||||
SCS*COS | −0.0075 (−4.07)*** | −0.0045 (−2.86)*** | ||||||
R2 | 0.2777 | 0.8289 | 0.2252 | 0.7520 | 0.1901 | 0.7905 | 0.2755 | 0.8601 |
N | 133 | 133 | 133 | 133 | 133 | 133 | 133 | 133 |
LP | −507.8803 | −510.1872 | −511.3723 | −516.0860 | ||||
rho | 2.0229 (7.01)*** | 2.0305 (6.61)*** | 2.0176 (6.47)*** | 1.9080 (5.08)*** | ||||
Hausman effect | −55.07 | −65.09 | −329.321 |
Independent Variable | Dependent Variable—PM10 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model (1a) | Model (2a) | Model (3a) | Model (4a) | |||||||||
Direct effect | Indirect effect | Total effect | Direct effect | Indirect effect | Total effect | Direct effect | Indirect effect | Total effect | Direct effect | Indirect effect | Total effect | |
PO | 0.012 (0.09) | 1.023 (2.98)*** | 1.036 (2.20)** | 0.134 (1.14) | 1.085 (3.27)*** | 1.219 (2.85)*** | 0.093 (0.67) | 1.170 (3.79)*** | 1.263 (3.06)*** | 0.134 (1.16) | 1.161 (3.79)*** | 1.295 (3.29)** |
COS | 0.165 (2.53)** | 0.085 (1.94)* | 0.250 (2.43)** | 0.134 (1.95)* | 0.072 (1.46) | 0.207 (1.83)* | 0.145 (2.05)** | 0.076 (1.56) | 0.221 (1.94)* | 0.450 (2.62)*** | 0.244 (2.57)** | 0.694 (3.40)** |
PD | 3.033 (1.19) | 19.931 (3.07)*** | 22.964 (2.57)** | 4.123 (1.61) | 21.215 (3.21)*** | 25.338 (2.82)*** | 4.747 (1.81) | 22.854 (3.36)*** | 27.601 (2.99)*** | 3.353 (1.48) | 20.827 (3.42)*** | 24.180 (2.95)** |
JBR | −0.099 (−2.41)** | −0.054 (−1.64)* | −0.153 (−2.14)** | −0.110 (−2.64)*** | −0.061 (−1.65)* | −0.170 (−2.29)** | −0.116 (−2.77)*** | −0.063 (−1.64)* | −0.178 (−2.33)** | −0.121 (−3.84)*** | −0.068 (−2.32)** | −0.189 (−3.25)** |
CBD | 0.029 (0.36) | −0.694 (−2.79)*** | −0.664 (−2.08)** | −0.020 (−0.26) | −0.738 (−3.10)*** | −0.757 (−2.51)** | −0.006 (−0.08) | −0.779 (−3.89)*** | −0.785 (−2.96)*** | −0.010 (−0.14) | −0.761 (−3.66)*** | −0.771 (−2.89)** |
DZN | 2.806 (1.95)* | 1.419 (1.66)* | 4.225 (1.92)** | |||||||||
DZI | 0.092 (1.31) | 0.047 (1.13) | 0.139 (1.28) | |||||||||
SCS | 0.059 (0.81) | 0.028 (0.53) | 0.087 (0.59) | 0.460 (2.91)*** | 0.247 (2.40)** | 0.707 (2.87)** | ||||||
SCS*COS | −0.006 (−2.96)*** | −0.003 (−2.31)** | −0.009 (−2.85)** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Wang, Y.; Wang, R.; Mi, C. Do Compactness and Poly-Centricity Mitigate PM10 Emissions? Evidence from Yangtze River Delta Area. Int. J. Environ. Res. Public Health 2019, 16, 4204. https://doi.org/10.3390/ijerph16214204
Tao J, Wang Y, Wang R, Mi C. Do Compactness and Poly-Centricity Mitigate PM10 Emissions? Evidence from Yangtze River Delta Area. International Journal of Environmental Research and Public Health. 2019; 16(21):4204. https://doi.org/10.3390/ijerph16214204
Chicago/Turabian StyleTao, Jing, Ying Wang, Rong Wang, and Chuanmin Mi. 2019. "Do Compactness and Poly-Centricity Mitigate PM10 Emissions? Evidence from Yangtze River Delta Area" International Journal of Environmental Research and Public Health 16, no. 21: 4204. https://doi.org/10.3390/ijerph16214204
APA StyleTao, J., Wang, Y., Wang, R., & Mi, C. (2019). Do Compactness and Poly-Centricity Mitigate PM10 Emissions? Evidence from Yangtze River Delta Area. International Journal of Environmental Research and Public Health, 16(21), 4204. https://doi.org/10.3390/ijerph16214204