Causal Effects of Prenatal Exposure to PM2.5 on Child Development and the Role of Unobserved Confounding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Notation
2.3. Research Question and Estimands
2.4. Assumption and ATT estimation
2.5. Sensitivity Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Health Risks of Air Pollution in Europe—HRAPIE Project: Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- WHO. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Suades-González, E.; Gascon, M.; Guxens, M.; Sunyer, J. Air Pollution and Neuropsychological Development: A Review of the Latest Evidence. Endocrinology 2015, 156, 3473–3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and Childhood Traffic-Related Pollution Exposure and Childhood Cognition in the Project Viva Cohort (Massachusetts, USA). Environ. Health Perspect. 2015, 123, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guxens, M.; Aguilera, I.; Ballester, F.; Marisa Estarlich, M.; Fernández-Somoano, A.; Lertxundi, A.; Lertxundi, N.; Mendez, M.A.; Tardón, A.; Vrijheid, M.; et al. Prenatal Exposure to Residential Air Pollution and Infant Mental Development: Modulation by Antioxidants and Detoxification Factors. Environ. Health Perspect. 2012, 120, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guxens, M.; Garcia-Esteban, R.; Giorgis-Allemand, L.; Forns, J.; Badaloni, C.; Ballester, F.; Beelen, R.; Cesaroni, G.; Chatzi, L.; de Agostini, M.; et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: Six European birth cohorts. Epidemiology 2014, 25, 636–647. [Google Scholar] [CrossRef]
- Lertxundi, A.; Baccini, M.; Lertxundi, N.; Fano, E.; Aranbarri, A.; Martínez, M.D.; Ayerdi, M.; Alvarez, J.; Santa-Marina, L.; Dorronsoro, M.; et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. Environ. Int. 2015, 80, 33–40. [Google Scholar] [CrossRef]
- Lertxundi, A.; Andiarena, A.; Martínez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef]
- Imbens, G.W.; Rubin, D.B. Causal Inference: For Statistics, Social, and Biomedical Sciences: An Introduction, 1st ed.; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Ichino, A.; Mealli, F.; Nannicini, T. From temporary help jobs to permanent employment: What can we learn from matching estimators and their sensitivity? J. Appl. Econom. 2008, 23, 305–327. [Google Scholar] [CrossRef]
- Ding, P.; VanderWeele, T.J. Sensitivity Analysis Without Assumptions. Epidemiology 2016, 27, 368–377. [Google Scholar] [CrossRef] [Green Version]
- VanderWeele, T.J.; Ding, P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef]
- Cornfield, J.; Haenszel, W.; Hammond, E.C.; Lilienfeld, A.M.; Shimkin, M.B.; Wynder, E.L. Smoking and lung cancer: Recent evidence and a discussion of some questions. J. Natl. Cancer Inst. 1959, 22, 173–203. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. Series B 1983, 45, 212–218. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. Sensitivity Analysis in Observational Studies. In Encyclopedia of Statistics in Behavioral Science; Everitt, B.S., Howell, D.C., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2005; Volume 4, pp. 1809–1814. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Arah, O.A. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders. Epidemiology 2011, 22, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; VanderWeele, T.J. Generalized Cornfield conditions for the risk difference. Biometrika 2014, 101, 1–13. [Google Scholar] [CrossRef]
- Hernán, M.A. Invited commentary: Hypothetical interventions to define causal effects—Afterthought or prerequisite? Am. J. Epidemiol. 2005, 162, 618–620. [Google Scholar] [CrossRef]
- Nannicini, T. A Simulation-Based Sensitivity Analysis for Matching Estimators. Stata J. 2007, 7, 334–350. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 13; StataCorp LP.: College Station, TX, USA, 2013. [Google Scholar]
- Ramón, R.; Ballester, F.; Rebagliato, M.; Ribas, N.; Torrent, M.; Fernández, M.; Sala, M.; Tardón, A.; Marco, A.; Posada, M.; et al. The Environment and Childhood Research Network (“INMA” network): Study protocol. Rev. Española Salud Publica 2005, 79, 203–220. [Google Scholar] [CrossRef]
- Bayley. Bayley Scales of Infant Development; Psychological Corporation: San Antonio, TX, USA, 1977. [Google Scholar]
- Li, F.; Baccini, M.; Mealli, F.; Zell, E.R.; Frangakis, C.E.; Rubin, D.B. Multiple imputation by ordered monotone blocks with application to the anthrax vaccine research program. J. Comput. Graph. Stat. 2014, 23, 877–892. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Schneeweiss, S.; Rothman, K.J.; Glynn, R.J.; Avorn, J.; Stürmer, T. Variable selection for propensity score models. Am. J. Epidemiol. 2006, 163, 1149–1156. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Rubin, D.B. Estimating and Using Propensity Scores with Partially Missing Data. J. Am. Stat. Assoc. 2000, 95, 749–759. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. The consequences of adjustment for a concomitant variable that has been affected by the treatment. J. R. Stat. Soc. Ser. A (Gen.) 1984, 147, 656–666. [Google Scholar] [CrossRef]
- European Environment Agency (EEA)—European Pollutant Release and Transfer Register (E-PRTR). Available online: http://prtr.ec.europa.eu/#/home (accessed on 30 January 2018).
- Becker, S.O.; Ichino, A. Estimation of average treatment effects based on propensity scores. Stata J. 2002, 2, 358–377. [Google Scholar] [CrossRef]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley& Sons: New York, NY, USA, 1987. [Google Scholar]
- Choi, J.; Dekkers, O.M.; le Cessie, S. A comparison of different methods to handle missing data in the context of propensity score analysis. Eur. J. Epidemiol. 2019, 34, 23–36. [Google Scholar] [CrossRef]
- Hirano, K.; Imbens, G.W. The Propensity Score with Continuous Treatments; Gelman, A., Meng, X.L., Eds.; Applied Bayesian modeling and causal inference from incomplete-data perspectives; Wiley InterScience: West Sussex, UK, 2004; pp. 73–84. [Google Scholar]
- Imai, K.; van Dyk, D.A. Causal inference with general treatment regimens: Generalizing the propensity score. J. Am. Stat. Assoc. 2004, 99, 854–866. [Google Scholar] [CrossRef]
N. of Missing Values | Entire Data Set (n = 438) | Complete Cases (n = 391) | ||||
---|---|---|---|---|---|---|
Percentage/Mean | Percentage/Mean | |||||
Treated | Controls | Treated | Controls | |||
Gender | 0 | Male | 45.7 | 44.7 | 47.6 | 45.4 |
Female | 54.3 | 55.3 | 52.4 | 54.6 | ||
Neuropsychologist | 0 | First | 98.4 | 47.8 | 97.8 | 50.6 |
Second | 1.6 | 52.2 | 2.2 | 49.4 | ||
Maternal fruit and veg. intake | 5 | >405 g/day | 76.2 | 70.6 | 77.7 | 70.4 |
≤405 g/day | 23.8 | 29.4 | 22.3 | 29.6 | ||
Maternal smoke | 13 | Yes | 18.2 | 28.3 | 18.4 | 27.4 |
No | 81.8 | 71.7 | 81.6 | 72.6 | ||
Smoke at 32 weeks of pregnancy | 34 | Yes | 11.3 | 11.0 | 11.0 | 11.1 |
No | 88.7 | 89.0 | 89.0 | 88.9 | ||
Nursery attendance | 26 | Yes | 48.6 | 44.6 | 48.7 | 44.9 |
No | 51.4 | 55.4 | 51.3 | 55.1 | ||
Caregiver | 28 | Mother | 55.6 | 48.2 | 55.2 | 48.0 |
Other | 44.4 | 51.8 | 44.8 | 52.0 | ||
Maternal education | 2 | University | 47.6 | 53.9 | 44.8 | 53.0 |
Secondary school or less | 52.4 | 46.1 | 55.2 | 47.0 | ||
Maternal work | 0 | Manual | 45.6 | 38.3 | 46.0 | 36.6 |
Non manual | 54.4 | 61.7 | 54.0 | 63.4 | ||
Mother’s age | 0 | (mean) | 31.2 | 31.7 | 31.3 | 31.7 |
Mother’s Body Mass Index | 1 | (mean) | 23.1 | 22.7 | 23.2 | 22.8 |
Parity | 0 | 1+ | 46.4 | 44.4 | 45.6 | 42.8 |
0 | 53.6 | 55.6 | 54.4 | 57.2 | ||
Breastfeeding | 24 | No | 46.6 | 47.6 | 47.1 | 45.5 |
Yes | 53.4 | 52.4 | 52.9 | 54.5 |
ATT | 90% CI | Outcome Effect (Γ) | Selection Effect (Λ) | |
---|---|---|---|---|
Gender: male, female (ref) | −1.88 | −7.12; 3.35 | 0.57 | 1.07 |
Neuropsychologist: first, second (ref) | 0.78 | −7.02; 8.57 | 0.20 | >103 |
Maternal fruit and vegetable intake: ≤405 g/day (ref), >405 g/day | −1.89 | −7.24; 3.47 | 1.04 | 1.55 |
Smoke: yes, no (ref) | −1.73 | −7.11; 3.65 | 1.18 | 0.62 |
Smoke at 32 weeks of pregnancy: yes, no (ref) | −2.07 | −7.35; 3.22 | 1.76 | 1.19 |
Nursery attendance: yes (ref), no | −1.88 | −7.13; 3.37 | 1.05 | 0.89 |
Caregiver: both parents, other (ref) | −1.81 | −7.16; 3.55 | 1.75 | 0.90 |
Caregiver: mother, other (ref) | −1.85 | −7.14; 3.44 | 0.85 | 1.42 |
Caregiver: relative, other (ref) | −2.11 | −7.28; 3.07 | 0.39 | 0.74 |
Maternal education: secondary school or less, university (ref) | −1.74 | −7.13; 3.65 | 0.74 | 1.43 |
Maternal work: non-manual worker (ref), manual worker | −1.75 | −7.12; 3.61 | 0.63 | 1.52 |
Mother’s age: <25, 25+ (ref) | −2.12 | −7.29; 3.06 | 0.31 | 3.00 |
Mother’s age: <35 (ref), 35+ | −1.92 | −7.25; 3.41 | 0.70 | 0.58 |
Body Mass Index: Normal weight, other (ref) | −1.89 | −7.22; 3.43 | 2.25 | 1.00 |
Parity: 0 (ref), 1+ | −1.92 | −7.16; 3.32 | 0.97 | 1.15 |
Breastfeeding: no, yes (ref) | −1.88 | −7.18; 3.42 | 1.67 | 1.16 |
ATT | 90% CI | Outcome Effect (Γ) | Selection Effect (Λ) | |
---|---|---|---|---|
Gender: male, female (ref) | −2.59 | −8.13; 2.95 | 0.58 | 1.12 |
Neuropsychologist: first, second (ref) | −0.88 | −9.38; 7.61 | 0.31 | >103 |
Maternal fruit and vegetable intake: ≤405 g/day (ref), >405 g/day | −2.70 | −8.32; 2.91 | 1.60 | 1.65 |
Smoke: yes, no (ref) | −2.33 | −7.97; 3.31 | 2.42 | 0.63 |
Smoke at 32 weeks of pregnancy: yes, no (ref) | −2.89 | −8.35; 2.57 | 3.77 | 1.27 |
Nursery attendance: yes (ref), no | −2.69 | −8.28; 2.89 | 1.07 | 0.90 |
Caregiver: both parents, other (ref) | −2.67 | −8.19; 2.84 | 1.62 | 0.90 |
Caregiver: mother, other (ref) | −2.60 | −8.22; 3.02 | 1.03 | 1.44 |
Caregiver: relative, other (ref) | −2.88 | −8.31; 2.54 | 0.36 | 0.83 |
Maternal education: secondary school or less, university (ref) | −2.47 | −8.19; 3.25 | 0.93 | 1.48 |
Maternal work: non-manual worker (ref), manual worker | −2.44 | −8.14; 3.26 | 0.71 | 1.53 |
Mother’s age: <25, 25+ (ref) | −2.91 | −8.28; 2.45 | 4.30 | 3.18 |
Mother’s age: <35 (ref), 35+ | −2.70 | −8.39; 2.99 | 0.71 | 0.57 |
Body Mass Index: Normal weight, other (ref) | −2.77 | −8.2; 2.67 | 0.84 | 0.95 |
Parity: 0 (ref), 1+ | −2.69 | −8.26; 2.89 | 1.80 | 1.23 |
Breastfeeding: no, yes (ref) | −2.66 | −8.16; 2.85 | 0.76 | 1.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tozzi, V.; Lertxundi, A.; Ibarluzea, J.M.; Baccini, M. Causal Effects of Prenatal Exposure to PM2.5 on Child Development and the Role of Unobserved Confounding. Int. J. Environ. Res. Public Health 2019, 16, 4381. https://doi.org/10.3390/ijerph16224381
Tozzi V, Lertxundi A, Ibarluzea JM, Baccini M. Causal Effects of Prenatal Exposure to PM2.5 on Child Development and the Role of Unobserved Confounding. International Journal of Environmental Research and Public Health. 2019; 16(22):4381. https://doi.org/10.3390/ijerph16224381
Chicago/Turabian StyleTozzi, Viola, Aitana Lertxundi, Jesus M. Ibarluzea, and Michela Baccini. 2019. "Causal Effects of Prenatal Exposure to PM2.5 on Child Development and the Role of Unobserved Confounding" International Journal of Environmental Research and Public Health 16, no. 22: 4381. https://doi.org/10.3390/ijerph16224381
APA StyleTozzi, V., Lertxundi, A., Ibarluzea, J. M., & Baccini, M. (2019). Causal Effects of Prenatal Exposure to PM2.5 on Child Development and the Role of Unobserved Confounding. International Journal of Environmental Research and Public Health, 16(22), 4381. https://doi.org/10.3390/ijerph16224381