Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms
Abstract
:1. Introduction
1.1. Background
1.2. The Hospital Wards and the Inpatient Room
1.3. Scope of the Paper
2. Decalogue for Healthy Air Quality in the Indoor Air of Inpatient Wards
2.1. Localization of the Healthcare Facility and the Inpatient Ward
- the one-face corridor has a linear development and its internal distribution is characterized by inpatient rooms and a corridor. Nevertheless, it allows proper orientation of the inpatient rooms in order to obtain the best possible sunlight exposure;
- the two-face corridor is characterized, instead, by a corridor that links the services on one side with the inpatient rooms on the other. It displays some issues as far as the flux differentiation between medical and visitors is concerned. Nevertheless, it allows proper orientation of the inpatient rooms in order to obtain the best possible sunlight exposure; and
- the double corridor has a central area devoted to services and connected by two corridors to the inpatient rooms. In this case, the patient benefits from direct or indirect sunlight throughout the entire day whereas the other environmental units such as medical offices, nurse stations, kitchenette, storages, etc. constitute the central core.
- if the windows are closed, the location of ventilation systems and the air filtering treatments are very strategic for the air quality;
- if the windows can be opened, then it is necessary to consider the vulnerable users: (a) the contribution of the ventilation system; (b) the size of the windows and their openings; (c) the neighborhood where the building is located (traffic area, factories, etc.) [27], and in particular the proximity of the front; and (d) the floor where it is located and the possible influence of wind.
2.2. Hospital Room
- the first area is the Service Zone. It includes the bathroom and a space specifically dedicated to nursing activities. The bathroom should be designed according to (disabled) accessibility regulations. In addition, the staff area entrance should be restricted. This first zone has a lower false ceiling in order to save space for installations and ventilation systems;
- in the Patient core, all attention is focused on the patient. Behind the bed, there are medical gases, reading lights, and electrical plugs. There is typically, at least, a wardrobe for personal items; in addition, in new and international hospitals, there is an interactive screen and a small screen to let the doctor access all information and data;
- the third area (optional) is called the Family Zone. Usually, the relationship between visitors and patients is solved by placing an armchair in a corner. In this case, space and furniture are the only elements that allow visitors to be hosted.
2.3. Microclimatic Parameters
2.4. Ventilation System
2.5. Materials and Finishing
2.6. Furniture and Equipment
2.7. Cleaning Activities and Products
- floors: neutral detergents, weakly alkaline (chlorine-derivatives, quaternary ammonium salts, phenol, etc.);
- furniture: neutral detergents for dusting (quaternary ammonium salts, phenol, alcohols, etc.);
- windows: neutral detergents (alcohols, phenol, etc.);
- bathrooms: detergents, weakly acid (chlorine-derivatives, quaternary ammonium salts, phenol, etc.) [40].
2.8. Maintenance Activities
2.9. Management Activities
2.10. Users in Inpatient Ward: The Role of Patients, Visitors and Sanitary and Non-Sanitary Staff
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capolongo, S.; Cocina, G.G.; Gola, M.; Peretti, G.; Pollo, R. Horizontality and verticality in architectures for health. Technè 2019, 17, 152–160. [Google Scholar] [CrossRef]
- Brambilla, A.; Rebecchi, A.; Capolongo, S. Evidence Based Hospital Design. A literature review of the recent publications about the EBD impact of built environment on hospital occupants’ and organizational outcomes. Ann. Ig. 2019, 31, 165–180. [Google Scholar] [CrossRef]
- Berrubé, A.; Mosqueron, L.; Cavereau, D.; Gangneux, J.P.; Thomas, O. Méthodologie d’évaluation semi-quantitative du risque chimique en établissement de soins. Environ. Risques Sante 2013, 12, 508–520. [Google Scholar]
- Settimo, G. Existing guidelines in indoor air quality: The case study of hospital environments. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 13–26. [Google Scholar] [CrossRef]
- Albertini, R.; Colucci, M.E.; Turchi, S.; Vitali, P. The management of air contamination control in operating theaters: The experience of the Parma University Hospital (IT). Aerobiologia 2019, in press. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Tedesco, P.; Rebecchi, A.; Capolongo, S. Water use and water saving in Italian hospitals. A preliminary investigation. Ann. Ist. Super. Sanità 2016, 52, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Azara, A.; Muresu, E.; Dettori, M.; Ciappeddu, P.; Deidda, A.; Maida, A. First results on the use of chloramines to reduce disinfection by products in drinking water. Ig. Sanita Pubbl 2010, 66, 583–600. [Google Scholar] [PubMed]
- Jacob, J.T.; Altug Kasali, M.; Steinberg, J.P.; Zimring, C.; Denham, M.E. The role of the hospital environment in preventing healthcare-associated infections caused by pathogens transmitted through the air. HERD 2013, 7, 74–98. [Google Scholar] [CrossRef]
- Bessonneau, V.; Mosqueron, L.; Berrubé, A.; Mukensturm, G.; Buffet-Bataillon, S.; Gangneux, J.P.; Thomas, O. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PLoS ONE 2013, 8, e55535. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Indoor Air Quality: Selected Pollutants, 1st ed.; World Health Organization: Copenhagen, Denmark, 2010. [Google Scholar]
- D’Amico, A.; Fara, G.M. The need to develop a multidisciplinary expertise for the microbiological safety of operating theatres. Ann. Ig. 2016, 28, 379–380. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; De Giglio, O.; Cristina, M.L.; Napoli, C.; Pacifico, C.; Agodi, A.; Baldovin, T.; Casini, B.; Coniglio, M.A.; D’Errico, M.M.; et al. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study. Int. J. Environ. Res. Public Health 2017, 14, 670. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Mele, A.; Tolino, B.; Capolongo, S. Applications of IAQ Monitoring in International Healthcare Systems. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 27–39. [Google Scholar] [CrossRef]
- Salonen, H.; Lappalainen, S.; Lahtinen, M.; Knibbs, L.; Morawska, L. Positive impacts of environmental characteristics on health and wellbeing in health-care facilities: A review. In Proceedings of the 10th International Conference on Healthy Buildings, Brisbane, Australia, 8–12 July 2012; Volume 2, pp. 1449–1454. [Google Scholar]
- Gola, M.; Signorelli, C.; Buffoli, M.; Rebecchi, A.; Capolongo, S. Local health rules and building regulations: A survey on local hygiene and building regulations in italian municiples. Ann. Ist. Super. Sanità 2017, 53, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Ottone, C.; Dell’Ovo, M. Minimum environmental criteria in the architectural project. Trade-off between environmental, economic and social sustainability. Valori e Valutazioni 2019, 22, 35–45. [Google Scholar]
- Gola, M.; Settimo, G.; Capolongo, S. Indoor Air Quality in Inpatient Environments: A Systematic Review on Factors that Influence Chemical Pollution in Inpatient Wards. J. Healthc. Eng. 2019, 8358306. [Google Scholar] [CrossRef] [PubMed]
- Śmiełowska, M.; Marć, M.; Zabiegała, B. Indoor air quality in public utility environments—A review. Environ. Sci. Pollut. Res. 2017, 24, 11166–11176. [Google Scholar] [CrossRef]
- Settimo, G.; Gola, M.; Mannoni, V.; De Felice, M.; Padula, G.; Mele, A.; Tolino, B.; Capolongo, S. Assessment of Indoor Air Quality in Inpatient Wards. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 107–118. [Google Scholar] [CrossRef]
- Gola, M.; Settimo, G.; Capolongo, S. Indoor air in healing environments: Monitoring chemical pollution in inpatient rooms. Facilities 2019, 37, 600–623. [Google Scholar] [CrossRef]
- Capasso, L.; Faggioli, A.; Rebecchi, A.; Capolongo, S.; Gaeta, M.; Appolloni, L.; De Martino, A.; D’Alessandro, D. Hygienic and sanitary aspects in urban planning: Contradiction in national and local urban legislation regarding public health. Epidemiologia e Prevenzione 2018, 42, 60–64. [Google Scholar] [CrossRef]
- Moscato, U.; Borghini, A.; Teleman, A.A. HVAC Management in Health Facilities. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 95–106. [Google Scholar] [CrossRef]
- Scheepers, P.T.J.; Van Wel, L.; Beckmann, G.; Anzion, R.B.M. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants. Int. J. Environ. Res. Public Health 2017, 14, 497. [Google Scholar] [CrossRef]
- Colucci, M.E.; Veronesi, L.; Roveda, A.M.; Marangio, E.; Sansebastiano, G. Particulate matter (PM10) air pollution, daily mortality, and hospital admissions: Recent findings. Igiene e sanità pubblica 2006, 62, 289–304. [Google Scholar]
- Buffoli, M.; Rebecchi, A.; Gola, M.; Favotto, A.; Procopio, G.P.; Capolongo, S. Green soap. A calculation model for improving outdoor air quality in urban contexts and evaluating the benefits to the population’s health status. In Integrated Evaluation for the Management of Contemporary Cities, 1st ed.; Mondini, G., Fattinnanzi, E., Oppio, A., Bottero, M., Stanghellini, S., Eds.; Springer Green Energy and Technology: Cham, Switzerland, 2018; pp. 453–467. [Google Scholar] [CrossRef]
- Schaefer, M. Building Hospitals—Hospital buildings. In The Architecture of Hospitals, 1st ed.; Wagenaar, C., Ed.; NAi Publishers: New York, NY, USA, 2006; pp. 201–251. [Google Scholar]
- Capolongo, S.; Rebecchi, A.; Dettori, M.; Appolloni, L.; Azara, A.; Buffoli, M.; Capasso, L.; Casuccio, A.; Conti Oliveri, G.; D’Amico, A.; et al. Healthy design and urban planning strategies, actions, and policy to achieve salutogenic cities. Int. J. Environ. Res. Public Health 2018, 15, 2698. [Google Scholar] [CrossRef]
- Tormo-Molina, R.; Gonzalo-Garijo, A.; Silva-Palacios, I.; Fernández-Rodríguez, I. Seasonal and Spatial Variations of Indoor Pollen in a Hospital. Int. J. Environ. Res. Public Health 2009, 6, 3169–3178. [Google Scholar] [CrossRef] [Green Version]
- Joppolo, C.M.; Romano, F. HVAC System Design in Health Care Facilities and Control of Aerosol Contaminants: Issues, Tools and Experiments. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 83–94. [Google Scholar] [CrossRef]
- Potočnik, J.; Cadena, J.D.B.; Košir, M.; Poli, T. Occupant perception of spectral light content variations due to glazing type and internal finish. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Guangzhou, China, 10–12 May 2019; Volume 296, p. 012033. [Google Scholar] [CrossRef]
- Ulrich, R.S. Effects of health facility interior design on wellness: Theory and recent scientific research. J. Healthc. Des. 1991, 3, 97–109. [Google Scholar]
- Alfonsi, E.; Capolongo, S.; Buffoli, M. Evidence based design and healthcare: An unconventional approach to hospital design. Ann. Ig. 2014, 26, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Flink, M.; Glas, S.B.; Airosa, F.; Öhlén, G.; Barach, P.; Hansagi, H.; Brommels, M.; Olsson, M. Patient-centered handovers between hospital and primary health care: An assessment of medical records. Int. J. Med. Inform. 2015, 84, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Escombe, A.R.; Oeser, C.C.; Gilman, R.H.; Navincopa, M.; Ticona, E.; Pan, W.; Martínez, C.; Chacaltana, J.; Rodríguez, R.; Moore, D.A.J.; et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007, 4, 309–317. [Google Scholar] [CrossRef]
- Kalliomaki, P.; Koskela, H.; Saarinen, P.; Tang, J.W.; Klettner, C.; Nicolle, A. Different types of door-opening motions as contributing factors to containment failures in hospital isolation rooms. PLoS ONE 2013, 8, e66663. [Google Scholar] [CrossRef]
- Hathway, A.; Papakonstantis, I.; Bruce-Konuah, A.; Brevis, W. Experimental and modelling investigations of air exchange and infection transfer due to hinged-door motion in office and hospital settings. Int. J. Vent. 2015, 14, 127–140. [Google Scholar] [CrossRef]
- Kalliomäki, P.; Saarinen, P.; Tang, J.W.; Koskela, H. Airflow Patterns through Single Hinged and Sliding Doors in Hospital Isolation Rooms. Int. J. Vent. 2015, 14, 111–126. [Google Scholar] [CrossRef]
- Schulster, L.; Chinn, R.Y.; Arduino, M.J.; Carpenter, J.; Donlan, R.; Ashford, D.; Besser, R.; Fields, B.; McNeil, M.M.; Whitney, C.; et al. Guidelines for environmental infection control in health-care facilities. In Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC); Department of Health and Human Services Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017. [Google Scholar]
- Gola, M. Sustainable High. Quality Healthcare Facilities. Indoor Air Quality as Health Promoter in Healing Environments. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 26 September 2018. [Google Scholar]
- Cantagalli, D. I prodotti chimici in ambito ospedaliero. Caratteristiche, performance, rischi, risultati. Quali prodotti chimici a seconda degli ambiti di intervento. Dissemination, Politecnico di Milano, Milan, Italy, 2017. [Google Scholar]
- Bivolarova, M.; Ondráček, J.; Melikov, A.; Zdimal, V. A comparison between tracer gas and aerosol particles distribution indoors: The impact of ventilation rate, interaction of airflows, and presence of objects. Indoor Air 2017, 27, 1201–1212. [Google Scholar] [CrossRef]
- Dore, S.; Sotgiu, G.; Piana, A.; Are, B.M.; Arru, B.; Puddu, A.; Piredda, C.; Dettori, M.; Palmieri, A.; Porcu, A.; et al. Microbial contamination of surfaces in the departments of Medicine and Surgery: Single center prevalence study in Sassari (Italy). Recenti Progress. Med. 2016, 107, 50–54. [Google Scholar]
- Pati, D.; Pietrzak, M.P.; Duthu, D.; Lei, T.-K.G.; Vincent, D.; Franklin, T.; Harvey, T.E., Jr.; Ransdell, T. Airborne contamination control through directed airflow in the exam room: A pilot study using a membrane diffuser. J. Healthc. Eng. 2010, 1, 655–674. [Google Scholar] [CrossRef]
- ASHRAE 170. Ventilation of Health Care Facilities; ASHRAE: New York, NY, USA, 2008. [Google Scholar]
- Oberti, I. Environmentally Friendly and Low-Emissivity Construction Materials and Furniture. In Indoor Air Quality in Healthcare Facilities, 1st ed.; Capolongo, S., Settimo, G., Gola, M., Eds.; Springer Public Health: New York, NY, USA, 2017; pp. 73–81. [Google Scholar] [CrossRef]
- Gray, W.A.; Vittori, G.; Guenther, R.; Vernon, W.; Dilwali, K. Leading the way: Innovative sustainable design guidelines for operating healthy healthcare buildings. In Proceedings of the ISIAQ–10th International Conference on Healthy Buildings, Curran Associates, Red Hook, NY, USA, 12 July 2012; pp. 1212–1217. [Google Scholar]
- Hase, H.; Ando, Y.; Sakurai, N.; Ohno, H. The influence of room temperature and relative humidity on odor in a unit-type nursing home. In Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings IAQVEC 2007, Sendai, Japan, 28–31 October 2007; pp. 201–206. [Google Scholar]
- Stucchi, M.; Galli, F.; Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Biasioli, F.; Capucci, V. Simultaneous photodegradation of VOCs mixture by TiO2 powders. Chemosphere 2018, 193, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Mosca, E.I.; Herssens, J.; Rebecchi, A.; Capolongo, S. Inspiring architects in the application of design for all: Knowledge transfer methods and tools. J. Access. Des. All 2019, 9, 1–24. [Google Scholar] [CrossRef]
- Sattler, B.; Hall, K. Healthy choices: Transforming our hospitals into environmentally healthy and safe places. OJIN 2007, 12, 3. [Google Scholar] [PubMed]
- Gianfredi, V.; Salvatori, T.; Nucci, D.; Villarini, M.; Moretti, M. Genotoxic risk in nurses handling antiblastic drugs: Systematic review of literature and meta-Analysis. Recenti Progress. Med. 2017, 108, 511–520. [Google Scholar] [CrossRef]
- Laumbach, R.; Meng, Q.; Kipen, H. What can individuals do to reduce personal health risk from air pollution? J. Thorac. Dis. 2015, 7, 96–107. [Google Scholar]
- Bello, A.; Quinn, M.M.; Perry, M.J.; Milton, D.K. Quantitative assessment of airborne exposures generated during common cleaning tasks: A pilot study. Environ. Health 2010, 9, 76. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Colombo, E.; Gatto, S.; Stucchi, M.; Cerrato, G.; Morandi, S.; Capucci, V. Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-gres tiles. J. Photochem. Photobiol. A 2014, 280, 27–31. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Pirola, C.; Stucchi, M.; Sacchi, B.; Cerrato, G.; Morandi, S.; Di Michele, A.; Carletti, A.; Capucci, V. A new frontier of photocatalysis employing micro-sized TiO2: Air/water pollution abatement and self-cleaning/antibacterial applications. In Semiconductor Photocatalysis-Materials, Mechanisms and Applications; University of Science and Technology Beijing: Beijing, China, 2016; pp. 635–666. [Google Scholar] [CrossRef]
- Siracusa, M.; Scuri, S.; Grappasonni, I.; Petrelli, F. Healthcare acquired infections: Malpractice and litigation issues. Annali di Igiene 2019, 31, 496–506. [Google Scholar] [CrossRef]
- Astley, P.; Capolongo, S.; Gola, M.; Tartaglia, A. Operative and design adaptability in healthcare facilities. Technè 2015, 9, 162–170. [Google Scholar] [CrossRef]
- Pollo, R. Quali strategie per il facility-management degli ospedali. Progett. Per La Sanità 2017, 11, 36–39. [Google Scholar]
- Capolongo, S.; Brioschi, A. I cantieri in ospedale: Valutazione degli interventi di prevenzione e soluzioni progettuali, tecniche e tecnologiche. Ann. Ig. 2007, 19, 75–87. [Google Scholar]
- Leung, M.; Chan, A.H.S. Control and management of hospital indoor air quality. Med. Sci. Monit. 2006, 12, SR17–SR23. [Google Scholar] [PubMed]
- Sdino, L.; Zorzi, F.; Rosasco, P.; Magoni, S. The Mass Appraisal Tool: Application of a Pluri-Parametric Model for the Appraisal of Real Properties. In Appraisal: From Theory to Practice, 1st ed.; Stanghellini, S., Morano, P., Bottero, M., Oppio, A., Eds.; Springer Green Energy and Technology: Cham, Switzerland, 2017; pp. 39–52. [Google Scholar] [CrossRef]
- Chrysikou, E. Why we need new architectural and design paradigms to meet the needs of vulnerable people. Palgrave Commun. 2018, 4, 116. [Google Scholar] [CrossRef]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef]
- Aprea, E.; Morisco, F.; Biasioli, F.; Vitaglione, P.; Cappellin, L.; Soukoulis, C.; Lembo, V.; Gasperi, F.; D’Argenio, G.; Fogliano, V.; et al. Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet. J. Mass Spectrom. 2012, 47, 1098–1103. [Google Scholar] [CrossRef] [Green Version]
- Spaněl, P.; Smith, D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. [Google Scholar] [CrossRef]
- Sdino, L.; Magoni, S. The sharing economy and real estate market: The phenomenon of shared houses. In Smart and Sustainable Planning for Cities and Regions, 1st ed.; Bisello, A., Vettorato, D., Laconte, P., Costa, S., Eds.; Springer Green Energy and Technology: Cham, Switzerland, 2017; pp. 241–251. [Google Scholar] [CrossRef]
- Petrelli, F.; Scuri, S.; Tanzi, E.; Nguyễn, T.T.C.; Grappasonni, I. Public health and burnout: A survey on lifestyle changes among workers in the healthcare sector. Acta Biomed. 2019, 90, 24–30. [Google Scholar] [CrossRef]
- Gianfredi, V.; Grisci, C.; Nucci, D.; Parisi, V.; Moretti, M. Communication in health. Recenti Progress. Med. 2018, 109, 374–383. [Google Scholar]
- Sotgiu, G.; Are, B.M.; Pesapane, L.; Palmieri, A.; Muresu, N.; Cossu, A.; Dettori, M.; Azara, A.; Mura, I.; Cocuzza, C.; et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: A molecular epidemiological study. J. Hosp. Infect. 2018. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gola, M.; Settimo, G.; Capolongo, S. Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms. Int. J. Environ. Res. Public Health 2019, 16, 4388. https://doi.org/10.3390/ijerph16224388
Gola M, Settimo G, Capolongo S. Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms. International Journal of Environmental Research and Public Health. 2019; 16(22):4388. https://doi.org/10.3390/ijerph16224388
Chicago/Turabian StyleGola, Marco, Gaetano Settimo, and Stefano Capolongo. 2019. "Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms" International Journal of Environmental Research and Public Health 16, no. 22: 4388. https://doi.org/10.3390/ijerph16224388
APA StyleGola, M., Settimo, G., & Capolongo, S. (2019). Chemical Pollution in Healing Spaces: The Decalogue of the Best Practices for Adequate Indoor Air Quality in Inpatient Rooms. International Journal of Environmental Research and Public Health, 16(22), 4388. https://doi.org/10.3390/ijerph16224388