Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis and Sample Pretreatment
2.3. Quality Assurance and Quality Control
2.4. Human Risk Assessment
3. Results and Discussion
3.1. Characteristics of Semi-Volatile Organic Contaminants in Rural Pond Water
3.2. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Feng, Q.; Wen, S.; Bai, X.; Chang, W.; Cui, C.; Zhao, W. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 2019, 137, 1–9. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, D.; Feng, Q.; Wen, S.; Chang, W. DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (1 0 1) surface. Miner. Eng. 2019, 141. [Google Scholar] [CrossRef]
- Sun, H.; An, T.; Li, G.; Qiao, M.; Wei, D. Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China. Environ. Sci. Pollut. Res. Int. 2014, 21, 10083–10095. [Google Scholar] [CrossRef]
- Tang, J.; An, T.; Xiong, J.; Li, G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. Environ. Geochem. Health 2017, 39, 1487–1499. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Jiang, D.; Zhang, R.; Cui, Y.; Li, M. Health risk assessment of semi-volatile organic pollutants in Lhasa River China. Ecotoxicology 2014, 23, 567–576. [Google Scholar] [CrossRef]
- He, X.; Pang, Y.; Song, X.; Chen, B.; Feng, Z.; Ma, Y. Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China. Mar. Pollut. Bull. 2014, 80, 52–58. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Wang, X.T.; Wang, F.; Jia, Y.; Wu, M.H.; Sheng, G.Y.; Fu, J.M. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 2009, 75, 1112–1118. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hirata-Koizumi, M.; Ema, M. Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul. Toxicol. Pharmacol. 2008, 50, 37–49. [Google Scholar] [CrossRef]
- Martino-Andrade, A.J.; Chahoud, I. Reproductive toxicity of phthalate esters. Mol. Nutr. Food Res. 2010, 54, 148–157. [Google Scholar] [CrossRef]
- Li, X.-W.; Liang, Y.; Su, Y.; Deng, H.; Li, X.-H.; Guo, J.; Lian, Q.-Q.; Ge, R.-S. Adverse effects of di-(2-ethylhexyl) phthalate on Leydig cell regeneration in the adult rat testis. Toxicol. Lett. 2012, 215, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H. Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis. J. Chromatogr. A 1996, 733, 19–34. [Google Scholar] [CrossRef]
- Dasgupta, A. Gas chromatographic–mass spectrometric identification and quantification of aniline after extraction from serum and derivatization with 2,2,2-trichloroethyl chloroformate, a novel derivative. J. Chromatogr. B 1998, 716, 354–358. [Google Scholar] [CrossRef]
- Liu, X.Y.; Ji, Y.S.; Zhang, H.X.; Liu, M.C. Highly sensitive analysis of substituted aniline compounds in water samples by using oxidized multiwalled carbon nanotubes as an in-tube solid-phase microextraction medium. J. Chromatogr. A 2008, 1212, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.S.; Thompson, M.; Elwell, M.R.; Gerken, D.K. Toxicity of p-chloroaniline in rats and mice. Fd. Chem. Toxic 1990, 28, 717–722. [Google Scholar] [CrossRef]
- Gomes, R.; Liteplo, R.G.; Meek, M.E. Aniline: Evaluation of risks to health from environmental exposure in Canada. J. Environ. Sci. Health Part C 1994, 12, 135–144. [Google Scholar] [CrossRef]
- Canofeni, S.; Di Sario, S.; Mela, J.; Pilloton, R. Comparison of immobilisation procedures for development of an electrochemical PPO-Based biosensor for on line monitoring of a depuration process. Anal. Lett. 1994, 27, 1659–1669. [Google Scholar] [CrossRef]
- Sotomayor, M.; Tanaka, A.; Kubota, L.T. Development of an enzymeless biosensor for the determination of phenolic compounds. Anal. Chim. Acta 2002, 455, 215–223. [Google Scholar] [CrossRef]
- Bukowska, B.; Goszczyńska, K.; Duda, W. Effect of 4-chloro-2-methylphenoxyacetic acid and 2,4-dimethylphenol on human erythrocytes. Pestic. Biochem. Physiol. 2003, 77, 92–98. [Google Scholar] [CrossRef]
- Feigenbrugel, V.; Le Calvé, S.; Mirabel, P.; Louis, F. Henry’s law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature. Atmos. Environ. 2004, 38, 5577–5588. [Google Scholar] [CrossRef]
- Holcombe, G.W.; Phipps, G.L.; Fiandt, J.T. Effects of phenol, 2,4-dimethylphenol, 2,4-dichlorophenol and pentachlorophenol on embryo, larval, and early-juvenile fathead minnows (pimephales promelas). Arch. Environ. Contam. Toxicol. 1982, 11, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Song, H.W.; Wang, D.H.; Xu, X.; Wang, H.L.; Chen, X.C.; Luo, Q.; Wang, Z.J.; Du, Y.X. Occurrence of 14 phenols in 24 typical drinking water sources of China. Acta. Sci. Circumstantiae 2014, 34, 355–362. [Google Scholar]
- Li, Z.; Chang, F.; Shi, P.; Chen, X.; Yang, F.; Zhou, Q.; Pan, Y.; Li, A. Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea. Chemosphere 2018, 206, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, G.; Yu, Y.J.; Huang, J.; Hu, H.Y.; Wang, L.S. Health risk assessment of organic pollutants in Jiangsu reach of the Huaihe River, China. Water Sci. Technol. 2009, 59, 907–916. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, W.; Shi, X.; Yu, X.; Li, M.; Xiao, L.; Cui, Y. Health risk of semi-volatile organic pollutants in Wujin river inflow into Taihu Lake. Ecotoxicology 2011, 20, 1083–1089. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Luo, T.; Du, X.; Wang, Y.; Xie, Q.; Matsuura, N.; Chen, J.; Kadokami, K. Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environ. Pollut. 2016, 218, 739–748. [Google Scholar] [CrossRef]
- Williams, P.R.; Dotson, G.S.; Maier, A. Cumulative risk assessment (CRA): Transforming the way we assess health risks. Environ. Sci. Technol. 2012, 46, 10868–10874. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Zhang, X.; Yasun, A.; Zhang, Y.; Zhao, D.; Ford, T.; Cheng, S. Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water. Ecotoxicology 2009, 18, 707–714. [Google Scholar] [CrossRef]
- Dong, J.Y.; Wang, S.G.; Shang, K.Z. Water environmental health risk assessment of phthalic acid esters in Lanzhou reach of Yellow River. J. Agro-Enivron. Sci. 2010, 29, 963–968. [Google Scholar]
- Lyons, C.D.; Katz, S.E.; Bartha, R. Persistence and mutagenic potential of herbicide-derived aniline residues in pond water. Bull. Environ. Contam. Toxicol. 1985, 35, 696–703. [Google Scholar] [CrossRef]
- Bridges, C.; Little, E.; Gardiner, D.; Petty, G.; Huckins, J. Assessing the toxicity and teratogenicity of pond water in north-central Minnesota to Amphibians. Environ. Sci. Pollut. Res. Int. 2004, 11, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.M.; Divakaran, S.; Kim, B.G. Stimulating effects of pond water on digestive enzyme activity in the pacific white shrimp, litopenaeus vannamei (Boone). Aquac. Res. 2001, 32, 125–131. [Google Scholar] [CrossRef]
- Zhu, T.; Rao, Z.; Guo, F.; Zhan, N.; Wang, Y.; Arandiyan, H.; Li, X.J. Simultaneous determination of 32 polycyclic aromatic hydrocarbon derivatives and parent PAHs using gas chromatography-mass spectrometry: Application in groundwater screening. Bull. Environ. Contam. Toxicol. 2018, 101, 664–671. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part A); Untied States Environmental Protection Agency: Washington, DC, USA, 1989.
- Han, B.; He, J.T.; Chen, H.H.; Chen, H.W.; Shi, J.H. Primary study of health-based risk assessment of organic pollution in groundwater. Earth Sci. Front. 2006, 13, 224–229. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); Untied States Environmental Protection Agency: Washington, DC, USA, 2004.
- Lee, S.C.; Guo, H.; Lam, S.M.J.; Lau, S.L.A. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environ. Res. 2004, 94, 47–56. [Google Scholar] [CrossRef]
- Li, B.; Hu, X.; Liu, R.; Zeng, P.; Song, Y. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds. Environ. Earth Sci. 2015, 73, 5095–5106. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, D.; Xu, X.; Luo, Q.; Wang, B.; Shan, X.; Wang, Z. Screening level ecological risk assessment for phenols in surface water of the Taihu Lake. Chemosphere 2010, 80, 998–1005. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhao, G.F.; Zhou, H.D.; Li, K.L.; Li, K.; Zhang, P.W. Distribution characteristics and potential risks of phenols in the rainy season surface water from three gorges reservoir. Environ. Sci. 2012, 33, 2580–2585. [Google Scholar]
- Li, G.; Xia, X.; Yang, Z.; Wang, R.; Voulvoulis, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ. Pollut. 2006, 144, 985–993. [Google Scholar] [CrossRef]
- Feng, C.; Xia, X.; Shen, Z.; Zhou, Z. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ. Monit. Assess. 2007, 133, 447–458. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.; Sun, T.; Li, H.; Luo, Q. Spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) contaminations in surface water from the Hun River, Northeast China. Environ. Monit. Assess. 2013, 185, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, Y.; Ma, Y.; Xu, Z.; Shi, G.; Zhuang, Y.; Zhu, T. Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China. J. Hazard. Mater. 2005, 122, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rao, Z.; Yang, Z.; Guo, X.; Huang, Y.; Zhang, J.; Guo, F.; Liu, C. A Survey of 42 semi-volatile organic contaminants in groundwater along the grand canal from Hangzhou to Beijing, East China. Int. J. Environ. Res. Public Health 2015, 12, 16070–16081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin-a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Goechem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Deng, W.; Li, X.G.; Li, S.Y.; Ma, Y.Y.; Zhang, D.H. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis. Mar. Pollut. Bull. 2013, 70, 266–273. [Google Scholar] [CrossRef]
- Wang, F.; Xia, X.; Sha, Y. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China. J. Hazard. Mater. 2008, 154, 317–324. [Google Scholar] [CrossRef]
- Jiang, F.X.; Liu, Z.T.; Feng, L.; Wang, W.H. Character analysis of organic pollutants in Yelloww River estuary area. Res. Environ. Sci. 2006, 19, 6–10. [Google Scholar]
Compounds | RfD (mg/kg Day) | Kp (cm/h) | SF (mg/kg·Day)−1 |
---|---|---|---|
phenol | 3.00 × 10−1 | 4.3 × 10−3 | - |
m-cresol | 5.00 × 10−2 | 7.8 × 10−3 | - |
p-cresol | 1.00 × 10−1 | 7.5 × 10−3 | - |
o-nitrophenol | - | - | - |
2,4-dimethylphenol | 2.00 × 10−2 | 1.1 × 10−2 | - |
2,4-dichlorophenol | 3.00 × 10−3 | 2.1 × 10−2 | - |
aniline | 7.00 × 10−3 | 1.9 × 10−3 | 5.70 × 10−3 |
p-chloroaniline | 4.00 × 10−3 | 5.0 × 10−3 | 2.00 × 10−1 |
naphthalene | 2.00 × 10−2 | 4.7 × 10−2 | - |
2-methylnaphthalene | 4.00 × 10−3 | 9.2 × 10−2 | - |
1-methylnaphthalene | 7.00 × 10−2 | 9.3 × 10−2 | 2.90 × 10−2 |
1,3-dimethylnaphthalene | - | - | - |
acenaphthylene | - | - | - |
1-aminonaphthalene | - | - | - |
2-aminonaphthalene | - | - | - |
fluorene | 4.00 × 10−2 | 1.1 × 10−1 | - |
phananthrene | - | 1.4 × 10−1 | - |
fluoranthene | 4.00 × 10−2 | 3.1 × 10−1 | - |
pyrene | 3.00 × 10−2 | 2.0 × 10−1 | - |
benzo[a]anthracene | - | 5.5 × 10−1 | 1.00 × 10−1 |
chrysene | - | 6.0 × 10−1 | 1.00 × 10−3 |
benzo[b]fluoranthene | - | 4.2 × 10−1 | 1.00 × 10−1 |
benzo[k]fluoranthene | - | 6.9 × 10−1 | 1.00 × 10−2 |
dimethyl phthalate | - | 1.4 × 10−3 | - |
diisobutyl phthalate | - | - | - |
dibutoxyethyl phthalate | - | - | - |
di-(2-ethylhexyl) phthalate | 2.00 × 10−2 | 1.1 | 1.40 × 10−2 |
Compounds | Min | Max | Mean | Median | SD | DN |
---|---|---|---|---|---|---|
Phenolic Compounds | ||||||
phenol | 26.2 | 2614 | 565 | 60.8 | 1145 | 5 |
m-cresol | 418 | 1544 | 981 | 981 | 796 | 2 |
p-cresol | 168 | 12860 | 6514 | 6514 | 8975 | 2 |
o-nitrophenol | 155 | 155 | 155 | 155 | - | 1 |
2,4-dimethylphenol | 191 | 191 | 191 | 191 | - | 1 |
2,4-dichlorophenol | 16.1 | 36.0 | 26.1 | 26.1 | 14.0 | 2 |
Anilines | ||||||
aniline | 33.7 | 2572 | 570 | 52.7 | 1120 | 5 |
p-chloroaniline | 39.9 | 65.0 | 55.4 | 61.1 | 13.5 | 3 |
PAHs a and their Derivatives | ||||||
naphthalene | 11.5 | 78.5 | 24.0 | 16.7 | 21.0 | 9 |
2-methylnaphthalene | 82.1 | 82.1 | 82.1 | 82.1 | - | 1 |
1-methylnaphthalene | 92.0 | 92.0 | 92.0 | 92.0 | - | 1 |
1,3-dimethylnaphthalene | 40.4 | 40.4 | 40.4 | 40.4 | - | 1 |
acenaphthylene | 5.07 | 34.5 | 13.2 | 6.65 | 14.2 | 4 |
1-aminonaphthalene | 28.7 | 826 | 236 | 45.3 | 393 | 4 |
2-aminonaphthalene | 69.6 | 737 | 292 | 181 | 305 | 4 |
fluorene | 3.98 | 3.98 | 3.98 | 3.98 | - | 1 |
phenanthrene | 22.0 | 80.6 | 38.6 | 31.1 | 24.1 | 5 |
fluoranthene | 4.29 | 52.1 | 13.2 | 7.07 | 15.1 | 9 |
pyrene | 6.48 | 54.6 | 18.0 | 11.4 | 16.2 | 8 |
benzo[a]anthracene | 5.04 | 42.5 | 16.9 | 8.9 | 13.9 | 10 |
chrysene | 7.11 | 68.2 | 29.7 | 21.8 | 24.2 | 8 |
benzo[b]fluoranthene | 7.82 | 51.0 | 21.5 | 14.5 | 16.3 | 8 |
benzo[k]fluoranthene | 4.24 | 37.3 | 16.6 | 12.1 | 14.1 | 6 |
PAEs b | ||||||
dimethyl phthalate | 59.0 | 2170 | 1115 | 1115 | 1493 | 2 |
diisobutyl phthalate | 630 | 630 | 630 | 630 | - | 1 |
dibutoxyethyl phthalate | 350 | 350 | 350 | 350 | - | 1 |
di-(2-ethylhexyl) phthalate | 580 | 960 | 739 | 708 | 160 | 4 |
Non-Carcinogenic Risk | ||||||
Compounds | Direct Ingestion | Dermal Absorption | ||||
Min | Mean | Max | Min | Mean | Max | |
phenol | 2.91 × 10−6 | 6.28 × 10−5 | 2.90 × 10−4 | 2.00 × 10−8 | 4.32 × 10−7 | 2.00 × 10−6 |
m-cresol | 2.79 × 10−4 | 6.54 × 10−4 | 1.03 × 10−3 | 3.47 × 10−6 | 8.13 × 10−6 | 1.28 × 10−5 |
p-cresol | 5.60 × 10−5 | 2.17 × 10−3 | 4.29 × 10−3 | 6.76 × 10−7 | 2.62 × 10−5 | 5.17 × 10−5 |
2,4-dimethylphenol | 3.18 × 10−4 | 3.18 × 10−4 | 3.18 × 10−4 | 5.54 × 10−6 | 5.54 × 10−6 | 5.54 × 10−6 |
2,4-dichlorophenol | 1.79 × 10−4 | 2.90 × 10−4 | 4.00 × 10−4 | 5.91 × 10−6 | 9.55 × 10−6 | 1.32 × 10−5 |
aniline | 1.61 × 10−4 | 2.71 × 10−3 | 1.22 × 10−2 | 4.88 × 10−7 | 8.25 × 10−6 | 3.72 × 10−5 |
p-chloroaniline | 3.33 × 10−4 | 4.61 × 10−4 | 5.42 × 10−4 | 2.64 × 10−6 | 3.66 × 10−6 | 4.30 × 10−6 |
naphthalene | 1.91 × 10−5 | 4.00 × 10−5 | 1.31 × 10−4 | 1.43 × 10−6 | 2.98 × 10−6 | 9.76 × 10−6 |
2-methylnaphthalene | 6.84 × 10−4 | 6.84 × 10−4 | 6.84 × 10−4 | 1.00 × 10−4 | 1.00 × 10−4 | 1.00 × 10−4 |
1-methylnaphthalene | 4.38 × 10−5 | 4.38 × 10−5 | 4.38 × 10−5 | 6.53 × 10−6 | 6.53 × 10−6 | 6.53 × 10−6 |
fluorene | 3.32 × 10−6 | 3.32 × 10−6 | 3.32 × 10−6 | 5.84 × 10−7 | 5.84 × 10−7 | 5.84 × 10−7 |
fluoranthene | 3.58 × 10−6 | 1.10 × 10−5 | 4.34 × 10−5 | 1.76 × 10−6 | 5.41 × 10−6 | 2.14 × 10−5 |
pyrene | 7.20 × 10−6 | 2.00 × 10−5 | 6.06 × 10−5 | 2.32 × 10−6 | 6.44 × 10−6 | 1.95 × 10−5 |
di-(2-ethylhexyl) phthalate | 9.67 × 10−4 | 1.23 × 10−3 | 1.60 × 10−3 | 1.75 × 10−3 | 2.23 × 10−3 | 2.89 × 10−3 |
HI | 3.06 × 10−3 | 8.71 × 10−3 | 2.17 × 10−2 | 1.88 × 10−3 | 2.41 × 10−3 | 3.18 × 10−3 |
Carcinogenic Risk | ||||||
Compounds | Direct Ingestion | Dermal Absorption | ||||
Min | Mean | Max | Min | Mean | Max | |
aniline | 6.41 × 10−9 | 1.08 × 10−7 | 4.89 × 10−7 | 1.95 × 10−11 | 3.29 × 10−10 | 1.49 × 10−9 |
p-chloroaniline | 2.66 × 10−7 | 3.69 × 10-7 | 4.34 × 10−7 | 2.11 × 10−9 | 2.93 × 10−9 | 3.44 × 10−9 |
1-methylnaphthalene | 8.89 × 10−8 | 8.89 × 10−8 | 8.89 × 10−8 | 1.32 × 10−8 | 1.32 × 10−8 | 1.32 × 10−8 |
benzo[a]anthracene | 1.68 × 10−8 | 5.63 × 10−8 | 1.42 × 10−7 | 1.49 × 10−8 | 4.97 × 10−8 | 1.25 × 10−7 |
chrysene | 2.37 × 10−10 | 9.91 × 10−10 | 2.27 × 10−9 | 2.26 × 10−10 | 9.45 × 10−10 | 2.17 × 10−9 |
benzo[b]fluoranthene | 2.61 × 10−8 | 7.17 × 10−8 | 1.70 × 10−7 | 1.74 × 10−8 | 4.78 × 10−8 | 1.13 × 10−7 |
benzo[k]fluoranthene | 1.41 × 10−9 | 5.53 × 10−9 | 1.24 × 10−8 | 1.56 × 10−9 | 6.11 × 10−9 | 1.38 × 10−8 |
di-(2-ethylhexyl) phthalate | 2.71 × 10−7 | 3.45 × 10−7 | 4.48 × 10−7 | 4.89 × 10−7 | 6.23 × 10−7 | 8.10 × 10−7 |
∑R | 6.77 × 10−7 | 1.05 × 10−6 | 1.79 × 10−6 | 5.39 × 10−7 | 7.44 × 10−7 | 1.08 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Rao, Z.; Wang, Y.; Arandiyan, H.; Gong, J.; Liang, M.; Guo, F. Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province. Int. J. Environ. Res. Public Health 2019, 16, 4481. https://doi.org/10.3390/ijerph16224481
Liu L, Rao Z, Wang Y, Arandiyan H, Gong J, Liang M, Guo F. Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province. International Journal of Environmental Research and Public Health. 2019; 16(22):4481. https://doi.org/10.3390/ijerph16224481
Chicago/Turabian StyleLiu, Lin, Zhu Rao, Yuan Wang, Hamidreza Arandiyan, Jie Gong, Ming Liang, and Feng Guo. 2019. "Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province" International Journal of Environmental Research and Public Health 16, no. 22: 4481. https://doi.org/10.3390/ijerph16224481
APA StyleLiu, L., Rao, Z., Wang, Y., Arandiyan, H., Gong, J., Liang, M., & Guo, F. (2019). Characteristics and Health Risk Assessment of Semi-Volatile Organic Contaminants in Rural Pond Water of Hebei Province. International Journal of Environmental Research and Public Health, 16(22), 4481. https://doi.org/10.3390/ijerph16224481