Anthropometric, Cardiopulmonary and Metabolic Benefits of the High-Intensity Interval Training Versus Moderate, Low-Intensity or Control for Type 2 Diabetes: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Selection Process and Data Extraction
2.4. Assessment of the Methodological Quality of the Studies
2.5. Statistical Analysis
3. Results
3.1. Assessment of the Methodological Quality of the Studies
3.2. Characteristics of the Studies
3.3. Groups and Subgroups Included in the Meta-Analysis
3.4. HIIT vs. CON
3.5. HIIT vs. MIT
3.6. HIIT vs. LIT
3.7. Overalls
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation IDF Diabetes Atlas, 8th Edition. Available online: https://www.diabetes atlas.org (accessed on 13 October 2017).
- Galve, E.; Cordero, A.; Bertomeu-Martínez, V.; Fácila, L.; Mazón, P.; Alegría, E.; Fernández de Bobadilla, J.; García-Porrero, E.; Martínez-Sellés, M.; González-Juanatey, J.R. Update in Cardiology: Vascular Risk and Cardiac Rehabilitation. Rev. Española Cardiol. 2015, 68, 136–143. [Google Scholar] [CrossRef]
- Gallardo-Alfaro, L.; Bibiloni, M.D.M.; Mateos, D.; Ugarriza, L.; Tur, J.A. Leisure-Time Physical Activity and Metabolic Syndrome in Older Adults. Int. J. Environ. Res. Public Health. 2019, 16, 3358. [Google Scholar] [CrossRef] [PubMed]
- Leiva, A.M.; Martínez, M.A.; Petermann, F.; Garrido-Méndez, A.; Poblete-Valderrama, F.; Díaz-Martínez, X.; Celis-Morales, C. Risk factors associated with type 2 diabetes in Chile. Nutr. Hosp. 2018, 35, 400–407. [Google Scholar] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. J. Am. Coll. Cardiol. 2014, 25, 102–138. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Marzal, D. Drugs that Improve Cardiovascular Prognosis in Diabetes and Are Not Yet Used by Cardiologists. Rev. Española Cardiol. 2018, 71, 999–1000. [Google Scholar] [CrossRef]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Wewege, M.; Van Den Berg, R.; Ward, R.E.; Keech, A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar] [CrossRef]
- Higgins, T.P.; Baker, M.D.; Evans, S.A.; Adams, R.A.; Cobbold, C. Heterogeneous responses of personalised high intensity interval training on type 2 diabetes mellitus and cardiovascular disease risk in young healthy adults. Clin. Hemorheol Microcirc. 2015, 59, 365–377. [Google Scholar] [CrossRef]
- Ballesta García, I.; Rubio Arias, J.Á.; Ramos Campo, D.J.; Martínez González-Moro, I.; Carrasco Poyatos, M. High-intensity Interval Training Dosage for Heart Failure and Coronary Artery Disease Cardiac Rehabilitation—A Systematic Review and Meta-analysis. Rev. Española Cardiol. 2018, 72, 233–243. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhu, L.; Li, P.J.; Li, N.; Xu, Y.B. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2019, 31, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Ossa, A.P.; Villaquirán-Hurtado, A.; Jácome-Velasco, S.; Galvis-Fernández, B.; Granados-Vidal, Y.A. Physical activity in patients with type 2 diabetes and its relationship with sociodemographic, clinical and anthropometric characteristics. Univ. Salud. 2017, 20, 72–81. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar]
- García-Hermoso, A.; Cerrillo-Urbina, A.J.; Herrera-Valenzuela, T.; Cristi-Montero, C.; Saavedra, J.M.; Martínez-Vizcaíno, V. Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obes. Rev. 2016, 17, 531–540. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar]
- Verhagen, A.P.; De Vet, H.C.; A De Bie, R.; Kessels, A.G.; Boers, M.; Bouter, L.M.; Knipschild, P.G. The Delphi list: A criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J. Clin. Epidemiol. 1998, 5, 1235–1241. [Google Scholar] [CrossRef]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef]
- Karstoft, K.; Winding, K.; Knudsen, S.H.; Nielsen, J.S.; Thomsen, C.; Pedersen, B.K.; Solomon, T.P. The Effects of Free-Living Interval- Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetic Patients: A randomized, controlled trial. Diabetes Care 2013, 36, 228–236. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramirez-Campillo, R.; Martinez-Salazar, C.; Mancilla, R.; Flores-Opazo, M.; Cano-Montoya, J.; Ciolac, E.G. Low-Volume High-Intensity Interval Training as a Therapy for Type 2 Diabetes. Int. J. Sports Med. 2016, 37, 723–729. [Google Scholar] [CrossRef]
- Terada, T.; Friesen, A.; Chahal, B.S.; Bell, G.J.; McCargar, L.J.; Boulé, N.G. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res. Clin. Pract. 2013, 99, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Mitranun, W.; Deerochanawong, C.; Tanaka, H.; Suksom, D. Continuous vs. interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand. J. Med. Sci. Sports 2014, 24, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, S.; Thoma, C.; Hallsworth, K.; Parikh, J.; Hollingsworth, K.G.; Taylor, R.; Jakovljevic, D.G.; Trenell, M.I. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia 2016, 59, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Ruffino, J.S.; Songsorn, P.; Haggett, M.; Edmonds, D.; Robinson, A.M.; Thompson, D.; Vollaard, N.B. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl. Physiol. Nutr. Metab. 2017, 42, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Støa, E.M.; Meling, S.; Nyhus, L.K.; Strømstad, G.; Mangerud, K.M.; Helgerud, J.; Bratland-Sanda, S.; Støren, Ø. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur. J. Appl. Physiol. 2017, 117, 455–467. [Google Scholar] [CrossRef]
- Maillard, F.; Rousset, S.; Pereira, B.; Traore, A.; de Pradel Del Amaze, P.; Boirie, Y.; Duclos, M.; Boisseau, N. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016, 42, 433–441. [Google Scholar] [CrossRef]
- Hollekim-Strand, S.M.; Bjørgaas, M.R.; Albrektsen, G.; Tjønna, A.E.; Wisløff, U.; Ingul, C.B. High-intensity interval exercise effectively improves cardiac function in patients with type 2 diabetes mellitus and diastolic dysfunction: A randomized controlled trial. J. Am. Coll. Cardiol. 2014, 64, 1758–1760. [Google Scholar] [CrossRef]
- Balducci, S.; Zanuso, S.; Cardelli, P.; Salvi, L.; Bazuro, A.; Pugliese, L.; Maccora, C.; Iacobini, C.; Conti, F.G.; Nicolucci, A.; et al. Effect of High-versus Low-Intensity Supervised Aerobic and Resistance Training on Modifiable Cardiovascular Risk Factors in Type 2 Diabetes; The Italian Diabetes and Exercise Study (IDES). PLoS ONE 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramirez-Campillo, R.; Martínez-Salazar, C.; Castillo, A.; Gallardo, F.; Ciolac, E. High-Intensity Interval Training as a Tool for Counteracting Dyslipidemia in Women. Int. J. Sports Med. 2018, 39, 397–406. [Google Scholar] [CrossRef]
- Barragán Torres, V.A.; García Prada, L.M.; Mateus Dueñez, L.M.; Mateus Mateus, L.C.; Rodríguez Sanabria, F. Essential oils, obesity and type 2 diabetes. Rev. Colomb. Ciencias. Quim. Farm. 2017, 46, 289–302. [Google Scholar] [CrossRef]
- Van Stappen, V.; Latomme, J.; Cardon, G.; De Bourdeaudhuij, I.; Lateva, M.; Chakarova, N.; Kivelä, J.; Lindström, J.; Androutsos, O.; González-Gil, E.; et al. Barriers from Multiple Perspectives Towards Physical Activity, Sedentary Behaviour, Physical Activity and Dietary Habits When Living in Low Socio-Economic Areas in Europe. The Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2018, 15, 2840. [Google Scholar] [CrossRef] [PubMed]
- Conde, A.C.; Martín, D.M.; González-Gallarza, R.D.; Esteban, V.A.; Bueno, M.M.; Marimon, X.G.-M.; Senén, A.B.; Murga, N.; Abeytua, M. Vascular Risk and Cardiac Rehabilitation 2015: A Selection of Topical Issues. Rev. Esp. Cardiol. (Engl. Ed.) 2016, 69, 294–299. [Google Scholar]
- Tagle, R.; Acevedo, M. Hypertension Therapeutic Objectives: Blood Pressure goals in special subgroups of hypertensive patients. Rev. Méd. Clín. Las Condes. 2018, 29, 21–32. [Google Scholar] [CrossRef]
- Edelmann, F.; Gelbrich, G.; Düngen, H.D.; Fröhling, S.; Wachter, R.; Stahrenberg, R.; Binder, L.; Töpper, A.; Lashki, D.J.; Schwarz, S.; et al. Exercise Training Improves Exercise Capacity and Diastolic Function in Patients with Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2011, 58, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.S.U.; Karimi, H.; Gillani, S.A.; Ahmad, S. Effects of supervised structured aerobic exercise training programme on level of Exertion, dyspnoea, VO2 max and Body Mass Index in patients with type 2 diabetes mellitus. J. Pak. Med. Assoc. 2017, 67, 1670–1673. [Google Scholar]
- Palumbo, C.; Nicolaci, N.; La Manna, A.A.; Branek, N.; Pissano, M.N. Association between central diabetes insipidus and type 2 diabetes mellitus. Medicina 2018, 78, 127–130. [Google Scholar]
- Bello-Hernández, Y.; García-Valdés, L.; Cruz, S.; Pérez, D.; Vega, D.; Torres, E.; Fernández, R.; Arenas, R. Prevalence of Malassezia spp. in type 2 diabetes mellitus according to glycemic control. Med. Int. Méx. 2017, 33, 612–617. [Google Scholar]
- Pérez, E.A.; Poveda González, M.; Martínez-Espinosa, R.M.; Molina Vila, M.D.; Reig García-Galbis, M. Practical Guidance for Interventions in Adults with Metabolic Syndrome: Diet and Exercise vs. Changes in Body Composition. Int. J. Environ. Res. Public Health 2019, 16, 3481. [Google Scholar] [CrossRef] [Green Version]
PEDro Scale | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Total Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Karstoff et al., 2013 [20] | 6 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
Álvarez et al., 2016 [21] | 6 | - | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
Terada et al., 2012 [22] | 7 | - | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Mitranum et al., 2012 [23] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Cassidy et al., 2015 [24] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Ruffino et al., 2016 [25] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Støa et al., 2016 [26] | 5 | - | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Maillard et al., 2016 [27] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Hollekim-Strand et al., 2014 [28] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Balducci et al., 2012 [29] | 5 | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Study | Groups | No. of Males/ Females | Average Age (Years) Mean (SD) | Years after Diagnosis Mean (SD) | Average Weight (Kg) Mean (SD) | Average Height (cm) Mean (SD) | Comorbidity among the Participants |
---|---|---|---|---|---|---|---|
Karstoff et al., 2013 [20] | HIIT (n = 12) | 7/5 | 57.5 (2.4) | 3.5 (0.7) | 84.9 (4.9) | NA | None |
LIT (n = 12) | 8/4 | 60.8 (2.2) | 6.2 (1.5) | 88.2 (4.7) | |||
CON (n = 8) | 5/3 | 57.1 (3) | 4.5 (1.5) | 88.5 (4.7) | |||
Álvarez et al., 2016 [21] | HIIT (n = 13) | 0/13 | 45.6 (3.1) | 3.4 (1.1) | 73.8 (2) | 156 (2) | None |
CON (n = 10) | 0/10 | 43.1 (1.5) | 3.6 (1.1) | 75.3 (1.6) | 158 (2) | ||
Terada et al., 2012 [22] | HIIT (n = 7) | 4/4 | 62 (3) | 6 (4) | 80.5 (9.9) | NA | None |
MIT (n = 8) | 4/3 | 63 (5) | 8 (4) | 93.9 (18.3) | |||
Mitranum et al., 2013 [23] | HIIT (n = 14) | 5/9 | 61.2 (2.8) | 19.5 (0.4) | 66.5 (3.7) | 149 (4) | None |
LIT (n = 14) | 5/9 | 61.7 (2.7) | 20.5 (0.4) | 65.8 (3.1) | 149 (5) | ||
CON (n = 15) | 5/10 | 60.9 (2.4) | 21.1 (0.6) | 67.7 (3.2) | 152 (5) | ||
Cassidy et al., 2015 [24] | HIIT (n = 12) | 10/2 | 61 (9) | 5 (3) | 90 (15) | 171 (8) | None |
CON (n = 11) | 8/3 | 59 (9) | 4 (2) | 90 (9) | 169 (9) | ||
Ruffino et al., 2016 [25] | HIIT (n = 16) | 16/0 | 55 (5) | 4 (4) | 96.7 (11.7) | 178 (6) | None |
MIT (n = 16) | 97 (11.6) | 178 (6) | |||||
Støa et al., 2016 [26] | HIIT (n = 19) | 15/23 | 59 (11) | 9 (7) | 95 (15.3) | 172 (6) | None |
MIT (n = 19) | 59 (10) | 6 (5) | 89.1 (15.6) | 170 (6) | |||
Maillard et al., 2016 [27] | HIIT (n = 8) | 0/8 | 68.2 (1.9) | 14.5 (2.1) | 79.5 (5.2) | NA | None |
MIT (n = 9) | 0/9 | 70.1 (2.4) | 73.9 (3.4) | ||||
Hollekim-Strand et al., 2014 [28] | HIIT (n = 20) | 12/8 | 58.6 (5) | 4.2 (2.3) | NA | NA | All the patients presented diastolic dysfunction of left ventricle. |
MIT (n = 17) | 11/6 | 54.7 (5.3) | 3 (2.6) | ||||
Balducci et al., 2012 [29] | HIIT (n = 152) | 91/61 | 59.5 (8.3) | 7.8 (6.2) | NA | NA | None |
LIT (n = 136) | 83/53 | 58.4 (8.9) | 5.9 (4) |
Study | Intervention | Frequency | Session Duration | Intervention Duration | Outcome Measure | Measuring Instrument | Results |
---|---|---|---|---|---|---|---|
Karstoff et al., 2013 [20] | G1 (HIIT): Interval walking training with 3-min repetitions at low (<70% peak energy-expenditure rate) and high (>70%) intensity. G2 (LIT): continuous-walking training (<55%) G3 (CON): Non-Intervention | 5 times/week | 60 min | 16 weeks | HbA1c (%); Weight and BMI; VO2max.; Systolic and Diastolic BP. | Blood sample through HPLC; DXA Scanner; Stress test. | Statistical differences were found in the LIT group: VO2max. (p < 0.001), Weight and BMI (p < 0.001). |
Álvarez et al. 2016 [21] | G1 (HIIT): running/jogging (90–100% HRmax). 8–14 repetitions, active rest between sets (<70% HRmax) G2 (CON): Non-Intervention | 3 times/week | 22–37.5 min | 16 weeks | HbA1c (%); Systolic and diastolic BP; Weight; BMI. | Blood sample through Variant II of HPLC; OMROM BP automatic monitor; OMROM digital precision balance; P/H2. | Statistical differences were found in the HIIT group: Weight (p < 0.05), BMI (p < 0.05), Systolic BP (p < 0.05), and HbA1c (p < 0.001). |
Terada et al., 2012 [22] | G1 (HIIT): treadmill training or cycling intervals 1′ (100%VO2max). and 3′ (20%VO2max). G2 (MIT): continuous treadmill training or cycling (40% VO2max). | 5 times/week | 30–60 min | 12 weeks | Weight; BMI; VO2max.; % Body fat; HbA1c (%). | Stress test through treadmill and metabolic measurement system (True Max); P/H2; DXA Scanner; Blood sample. | Statistical differences were found in % Body fat (p = 0.009). |
Mitranum et al., 2013 [23] | G1 (HIIT): 4–6 intervals (85% VO2max) during 1 min following 4 min of active rest (50% VO2max.). G2 (LIT): 50–65% VO2máx. G3 (CON): Non-Intervention | 3 times/week | 30–40 min | 12 weeks | Weight, BMI and % Body fat; VO2max.; HR; Systolic and diastolic BP. | Bioelectrical impedance; Stress test (Modified Bruce protocol); PolarTeam 2 Pro monitor; BP monitor. | Statistical differences (p < 0.05) were found in Weight, BMI, % Body fat, Systolic BP, Heart rate and VO2max. |
Cassidy et al., 2015 [24] | G1 (HIIT): 3 × 3′ cycloergometry G2 (CON): Non-intervention. | 3 times/week | 21–31 min | 12 weeks | HbA1c (%); Weight; Systolic and diastolic BP; Heart rate. | TOSOH HLC-723G8 analyzer; Plethysmography; Vascular unloading technique. | Nonstatistical differences were found. |
Ruffino et al. 2016 [25] | G1 (HIIT): cycloergometry (86–88% HRmax). 2 sprints of 10–20′’. G2 (MIT): Walking (40–55% HRmax). | 3 times/week 5 times/week | 10 min 30 min | 8 weeks | VO2max.; Weight and % Body fat; Systolic and diastolic BP. | TrueOne 2400 gas analysis system; DXA Scanner; Alvita MC101 Monitor. | Statistical differences (p < 0.05) were found in Systolic and diastolic BP. |
Støa et al., 2016 [26] | G1 (HIIT): 4 × 4′ (85–95% HRmax) with 3′ active rest (70% HRmax). G2 (MIT): 70–75% HRmax. | 3 times/week | 52 min 60 min | 12 weeks | Weight; % Body fat; BMI; Systolic and diastolic BP; VO2max.; HbA1c (%). | Tefal Sensitive Computer; skin firmly; P/H2; Stethoscope and BP measurement; Stress test; Polar rs100. | Statistical differences were found in Weight (p < 0.01), % Body fat (p < 0.001), BMI (p < 0.001), HbA1c (p < 0.001), VO2max. (p < 0.001), Diastolic BP (p < 0.01). |
Maillard et al., 2016 [27] | G1 (HIIT): cycloergometry (77–85% HRmax). G2 (MIT): cycloergometry (55–60% HRmax). | 2 times/week | 30 min 50 min | 16 weeks | Weight; BMI; % Body fat; HbA1c (%). | sRCT 709 weighing scale; P/H2; DXA Scanner; Variant II Analyzer of HPLC. | Nonstatistical differences were found. |
Hollekim-Strand et al., 2014 [28] | G1 (HIIT): 4 × 4′ (90–95% HRmax). G2: MIT | 3 times/week 210 min./week | 40 min ≥10 min | 12 weeks | VO2max.; HR; Systolic and diastolic BP; HbA1c (%); BMI; % Body fat. | Not showed in study. | Statistical differences were found in VO2max (p < 0.001). |
Balducci et al., 2012 [29] | G1 (HIIT): aerobic training (70% VO2max) + resistance training (60% 1-Repetition Maximum). G2 (LIT): aerobic training (55% VO2max.) + resistance training (60% 1-Repetition Maximum). | 2 times/week | 64–70 min 76–83 min | 48 weeks | HbA1c (%); VO2max.; BMI; Systolic and diastolic BP. | Blood biochemical test; Stress test through FitMate. | Statistical differences (p < 0.001) were found in: VO2max., BMI, Systolic and diastolic BP, HbA1c. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lora-Pozo, I.; Lucena-Anton, D.; Salazar, A.; Galán-Mercant, A.; Moral-Munoz, J.A. Anthropometric, Cardiopulmonary and Metabolic Benefits of the High-Intensity Interval Training Versus Moderate, Low-Intensity or Control for Type 2 Diabetes: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 4524. https://doi.org/10.3390/ijerph16224524
Lora-Pozo I, Lucena-Anton D, Salazar A, Galán-Mercant A, Moral-Munoz JA. Anthropometric, Cardiopulmonary and Metabolic Benefits of the High-Intensity Interval Training Versus Moderate, Low-Intensity or Control for Type 2 Diabetes: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2019; 16(22):4524. https://doi.org/10.3390/ijerph16224524
Chicago/Turabian StyleLora-Pozo, Ivan, David Lucena-Anton, Alejandro Salazar, Alejandro Galán-Mercant, and Jose A. Moral-Munoz. 2019. "Anthropometric, Cardiopulmonary and Metabolic Benefits of the High-Intensity Interval Training Versus Moderate, Low-Intensity or Control for Type 2 Diabetes: Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 16, no. 22: 4524. https://doi.org/10.3390/ijerph16224524
APA StyleLora-Pozo, I., Lucena-Anton, D., Salazar, A., Galán-Mercant, A., & Moral-Munoz, J. A. (2019). Anthropometric, Cardiopulmonary and Metabolic Benefits of the High-Intensity Interval Training Versus Moderate, Low-Intensity or Control for Type 2 Diabetes: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 16(22), 4524. https://doi.org/10.3390/ijerph16224524