Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Treatment
2.3. Analytical Methods
2.3.1. pH (KCl) Value Determination
2.3.2. Organic Matter (OM) Content Determination
2.3.3. Pseudo Total Heavy Metal Concentration Determination
2.3.4. Ethylene Diamine Tetraacetic Acid(EDTA)-Extractable Heavy Metal Concentration Determination
2.4. Calculation Methods
2.5. Data Statistical Analysis
3. Results and Discussion
3.1. Soil pH Value and Organic Matter Contents
3.2. Concentration of Heavy Metals in Soils
3.2.1. Box Plots of Heavy Metal Concentrations in Soils
3.2.2. Geochemical Baseline Study of the Soils of the Upstream Area
3.2.3. EDTA-Extractable Concentrations of Heavy Metals
3.2.4. Correlation Analysis
3.3. Assessment of Environmental Risks: Pollution Rates
3.3.1. The Pollution Factor and Nemerow Index
3.3.2. The Geoaccumulation Index and the Improved Nemerow Index
3.3.3. Potential Ecological Risk Index
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karak, T.; Bora, K.; Paul, R.K.; Das, S.; Khare, P.; Dutta, A.K.; Boruah, R.K. Paradigm shift of contamination risk of six heavy metals in tea (Camellia sinensis L.) growing soil: A new approach influenced by inorganic and organic amendments. J. Hazard. Mater. 2017, 338, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.F.; Antonio, M.G.; Pilar, A.R.; Antonio, G.S. Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes mountain range (Cajamarca-Huancavelica, Peru). Int. J. Environ. Res. Public Health 2017, 14, 859. [Google Scholar] [CrossRef]
- Beata, L.; Cezary, K.; Jaroslaw, W. Ambient geochemical baselines for trace elements in Chernozems-approximation of geochemical soil transformation in an agricultural area. Environ. Monit. Assess. 2019, 191, 19. [Google Scholar] [CrossRef] [PubMed]
- Azcue, J.M.; Mudroch, A.; Rosa, F.; Hall, G.E.M.; Jackaon, T.A.; Reynoldson, T. Trace elements in water, sediments, pore water, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. J. Geochem. Explor. 1995, 52, 25–34. [Google Scholar] [CrossRef]
- Lozano Rafiei, B.; Bakhtiari Nejad, M.; Hashemi, M.; Khodaei, A.S. Distribution of heavy metals around the Dashkasan Au mine. Int. J. Environ. Res. 2010, 4, 647–654. [Google Scholar]
- Liu, C.H.; Yi, Y.L.; Zhang, D.G.; Zhu, H.G.; Yang, Y. Cadmium pollution of soils in the surrounding area of Huludao zinc plant. Chin. J. Soil Sci. 2003, 4, 326–329. [Google Scholar]
- Li, R.P.; Wang, A.J.; Cao, D.H.; Geng, N.; Gao, L.; Zou, W.L.; Zhao, Y.X.; Xiu, Q.Y. Distribution of Pb in soils of the Jinding Pb-Zn deposit, Lanping, Yunnan province. Acta Geosci. Sin. 2009, 301, 72–78. [Google Scholar]
- Li, R.P.; Wang, A.J.; Cao, D.H.; Gao, L.; Geng, N.; Zhao, Y.X.; Zou, W.L.; Xiu, Q.Y. Research on the distribution characteristics of Zn, Cd in the soils of Jinding Pb-Zn deposit, Lanping County. Geol. Rev. 2009, 55, 126–133. [Google Scholar]
- Liu, Z.F.; Hu, S.B.; Song, F.M.; Zhao, Z.P.; Li, C.; Ge, H.G. Pollution characteristics and speciation analysis of heavy metals in soils around a lead-zinc smelter area in Shaanxi Province, China. J. Agro-Environ. Sci. 2019, 38, 818–826. [Google Scholar]
- Zou, X.L.; Zu, Y.Q.; Li, Y.; Zhan, F.D. Pollution and health risk assessment of cadmium and lead in cultivated soils and crops surrounding a lead-zinc mine in Yunnan Province. J. Agro-Environ. Sci. 2014, 33, 2143–2148. [Google Scholar]
- Zou, S.M.; Du, R.Y.; Wen, D.; Chen, Y.; Wang, F.H. Heavy metals pollution in vegetables grown on some farmlands around Dabaoshan mine and its healthy risk evaluation. J. Agric. Resour. Environ. 2016, 33, 568–575. [Google Scholar]
- Dina, T.; Li, D.P.; Hu, Y.; Yang, L.; Xu, X.L.; Jia, H.T. Physicochemical characteristics and ecological risk assessment of heavy metals contaminated soils in copper mining of Nulasai, Xinjiang, China. J. Agric. Resour. Environ. 2018, 35, 17–23. [Google Scholar]
- Baize, D.; Sterckeman, T. On the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by traces elements. Sci. Total Environ. 2004, 264, 127–139. [Google Scholar] [CrossRef]
- Alonso Rojo, P.; Santos Francés, F.; García Sánchez, A.; Alvarez-Ayuso, E. Baseline concentrations of heavy metals in native soils of the Salamanca and Valladolid provinces, Spain. Arid Land Res. Manag. 2004, 18, 241–250. [Google Scholar] [CrossRef]
- Covelli, S.; Fontolan, G. Application of a normalization procedure in determining regional geochemical baselines. Environ. Geol. 1997, 30, 34–45. [Google Scholar] [CrossRef]
- ISO/DIS 19258. Soil quality. In Guidance on the Determination of Background Values; International Standard Organisation (ISO): Geneva, Switzerland, 2002. [Google Scholar]
- Guo, X.X.; Liu, C.Q.; Zhu, Z.Z.; Wang, Z.L.; Li, J. Evaluation methods for soil heavy metals contamination: A review. Chin. J. Eco-Agric. 2011, 30, 889–896. [Google Scholar]
- Shi, R.G.; Gao, H.Y.; Zhao, Y.J.; Liu, F.Z.; Wang, Y.H.; Zheng, X.Q.; Yan, X.R.; Wang, B. Assessment of pollution of heavy metal in soils of Tianjin suburb by a mixed weighted model based on GIS. J. Agro-Environ. Sci. 2006, 25, 17–20. [Google Scholar]
- Loska, K.; Wiechua, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Guo, P.; Xie, Z.L.; Li, J.; Zhou, L.F. Specificity of heavy metal pollution and the ecological hazard in urban soils of Changchun city. Sci. Geogr. Sin. 2005, 25, 108–112. [Google Scholar]
- Zhang, X.W.; Wang, E.D.; An, J. Assessment of heavy metal pollution in Gongchangling iron mine region, Liaoyang. Chin. J. Eco-Agric. 2018, 37, 1789–1796. [Google Scholar]
- Li, G.; Wu, C.; Rodríguez-López, J.P.; Yi, H.; Xia, G.; Wagreich, M. MidCretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia. Sediment. Geol. 2018, 364, 121–140. [Google Scholar] [CrossRef]
- Xue, C.; Zeng, R.; Liu, S.; Chi, G.; Qing, H. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, south China: A review. Ore Geol. Rev. 2007, 31, 337–359. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Heavy metals accumulation in plants growing in ex tin mining catchment. Int. J. Environ. Sci. Technol. 2011, 8, 401–416. [Google Scholar] [CrossRef]
- He, L.; Song, Y.; Chen, K.; Hou, Z.; Yu, F.; Yang, Z.; Wei, J.; Li, Z.; Liu, Y. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geol. Rev. 2009, 36, 106–132. [Google Scholar] [CrossRef]
- Kyle, J.R.; Li, N. Jinding: A giant tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China. SEG. Newsl. 2002, 50, 8–16. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijin, China, 2000. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control of sediment ecological approach. Water Res. 1980, 14, 975–1000. [Google Scholar] [CrossRef]
- Zhai, L.M.; Chen, T.B.; Liao, X.Y.; Yan, X.L.; Wang, L.X.; Xie, H. Pollution of agricultural soils resulting from a tailing spill at a Pb-Zn mine: a case study in Huanjiang, Guangxi Province. Acta Scien. Circum. 2008, 6, 1206–1211. [Google Scholar]
- Li, Y.; Li, H.G.; Liu, F.C. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities. Environ. Monit. Assess. 2017, 189, 34. [Google Scholar] [CrossRef]
- Hu, X.Y.; Bai, J.H.; Wen, X.J.; Lu, Q.Q.; Wang, W.; Wang, D.W. Effects of Cd addition on nitrogen mineralization processes of rural and urban river wetland soils in the Pearl River Estuary. China. J. Agro-Environ. Sci. 2019, 38, 618–626. [Google Scholar]
- Giaccio, L.; Cicchella, D.; De Vivo, B.; Lombardi, G.; De Rosa, M. Does heavy metals pollution affects semen quality in men? A case of study in the metropolitan area of Naples (Italy). J. Geochem. Explor. 2012, 112, 218–225. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernandez, E.; Martinez-Pichardo, E.; Soler-Arechalde, A.M. Mexico City topsoils: Heavy metals vs. magnetic susceptibility. Geoderma 2009, 151, 121–125. [Google Scholar]
- Zhao, X.Q.; Li, L.J.; Yang, H.H.; Tan, S.C. The geochemical characteristics of heavy metals in agricultural soils of the Bijiang watershed in Yunnan province. Acta Geosci. Sin. 2012, 33, 331–340. [Google Scholar]
- Zhao, X.Q.; Yang, H.H.; Yi, Q. Characteristics and reasons of heavy metal pollution in farmland soils in Bijiang watershed. J. Anhui Agric. Sci. 2012, 40, 7569–7573. [Google Scholar]
- Huang, W.H.; Bao, L.; Lin, J.; Xiong, H.J.; Deng, H.; Zhang, N.M. Distribution and ecological risk assessment of heavy metals in arable soils in Bijiang watershed, China. J. Agric. Resour. Environ. 2017, 34, 456–465. [Google Scholar]
- Tidball, R.R.; Ebens, R.J. Regional geochemical baselines in soils of the Powder River Basin in Montana-Wyoming. In geology and energy resources of the Powder River Basin. In 28th Annual Field Conference Guidebook; Laudon, R.B., Ed.; Wyoming Geological Association Publications: Casper, WY, USA, 1976; pp. 299–310. [Google Scholar]
- Mielke, H.W.; Wang, G.; Gonzales, C.R.; Powell, E.T.; Le, B.; Quach, V.N. PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ. Toxicol. Pharmacol. 2005, 18, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, H.G.; Clarke, B.O.; Dasika, R.; Wallis, C.J.; Reichman, S.M. Assessment of ambient background concentrations of elements in soil using combined survey and open-source data. Sci. Total Environ. 2017, 580, 1410–1420. [Google Scholar] [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background-can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Wang, Z.; Darilek, J.L.; Zhao, Y.; Huang, B.; Sun, W. Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers. J. Soils Sediments 2011, 11, 3–14. [Google Scholar] [CrossRef]
- Mikkonen, H.G.; Dasika, R.; Drake, J.A.; Wallis, C.J.; Clarke, B.O.; Reichman, S.M. Evaluation of environmental and anthropogenic influences on ambient background metal and metalloid concentrations in soil. Sci. Total Environ. 2018, 624, 599–610. [Google Scholar] [CrossRef]
- Chang, X.X.; Wen, C.H.; Wang, H.X. Heavy metal pollution and human health. Yunnan Environ. Sci. 2000, 19, 59–61. [Google Scholar]
- Wang, H.; Zhang, M.K. Effects of organic matter accumulation and acidification on release potential of heavy metals from polluted soils. Chin. Soil Sci. 2009, 40, 538–541. [Google Scholar]
Area | Data | Surface Layer | Subsurface Layer | ||
---|---|---|---|---|---|
pH (KCI) | OM (%) | pH (KCI) | OM (%) | ||
Mining area | Mean | 6.8 ± 0.8 | 34.3 ± 29.1 | 5.9 ± 1.6 | 9.7 ± 8.1 |
Range | 5.9–7.4 | 7–65 | 4.2–7.3 | 4–19 | |
Upstream | Mean | 5.4 ± 1.5 | 4.9 ± 2.9 | 4.3 ± 0.8 | 2.9 ± 2.6 |
Range | 3.8–7.2 | 1.9–9.6 | 3.7–4.9 | 1–4.7 | |
Downstream | Mean | 4.4 ± 0.7 | 22.1 ± 13.2 | 4.5 ± 0.9 | 9.5 ± 13.7 |
Range | 3.7–5.6 | 1.7–43.7 | 3.8–6.6 | 1.7–49.5 |
Mining Area | Pb | Cu | Zn | Cd |
Mean | 842.00 | 10.67 | 1881.67 | 26.33 |
Geometric mean | 717.72 | 10.46 | 1404.14 | 20.38 |
Median (Me) | 1033.00 | 11.00 | 2610.00 | 35.33 |
Standard deviation (SD) | 476.15 | 2.52 | 1280.61 | 17.26 |
Minimum | 300.00 | 8.00 | 403.00 | 6.43 |
Maximum | 1193.00 | 13.00 | 2632.00 | 37.24 |
Variable coefficient (%) | 56.55 | 23.59 | 68.06 | 65.56 |
Kurtosis | −2.90 | −2.79 | −3.26 | −3.22 |
Skewness | −0.16 | −1.16 | −0.07 | −0.06 |
25th percentile | 666.50 | 9.50 | 1506.50 | 20.88 |
75th percentile | 1113.00 | 12.00 | 2621.00 | 36.29 |
Natural geological background (mean in the subsurface horizon) | 738.67 | 11.00 | 1628.00 | 18.24 |
Upstream | Pb | Cu | Zn | Cd |
Mean | 90.60 | 18.80 | 277.00 | 2.30 |
Geometric mean | 80.03 | 18.18 | 218.45 | 1.96 |
Median (Me) | 75.00 | 19.00 | 323.00 | 1.90 |
Standard deviation (SD) | 56.24 | 5.02 | 186.59 | 1.34 |
Minimum | 46.00 | 11.00 | 88.00 | 0.78 |
Maximum | 188.00 | 25.00 | 526.00 | 3.88 |
Variable coefficient (%) | 62.08 | 26.70 | 67.36 | 58.11 |
Kurtosis | 3.84 | 2.20 | −1.52 | −2.43 |
Skewness | 1.89 | −0.77 | 0.20 | 0.25 |
25th percentile | 61.00 | 19.00 | 94.00 | 1.44 |
75th percentile | 83.00 | 20.00 | 354.00 | 3.50 |
Natural geological background (mean in the subsurface horizon) | 55.50 | 24.50 | 319.00 | 0.96 |
Downstream | Pb | Cu | Zn | Cd |
Mean | 123.00 | 14.00 | 320.09 | 7.21 |
Geometric mean | 95.12 | 13.60 | 203.01 | 3.53 |
Median (Me) | 67.00 | 14.00 | 122.00 | 3.26 |
Standard deviation (SD) | 94.87 | 3.44 | 331.85 | 8.55 |
Minimum | 47.00 | 8.00 | 80.00 | 0.41 |
Maximum | 307.00 | 20.00 | 902.00 | 23.09 |
Variable coefficient (%) | 77.13 | 24.54 | 103.67 | 118.63 |
Kurtosis | −0.49 | −0.28 | −0.42 | −0.32 |
Skewness | 1.00 | 0.00 | 1.19 | 1.21 |
25th percentile | 50.00 | 11.50 | 91.50 | 1.44 |
75th percentile | 191.00 | 16.50 | 458.00 | 10.98 |
Natural geological background (mean in the subsurface horizon) | 13.82 | 13.00 | 39.18 | 0.37 |
World average | 15 | 12 | 40 | 0.40 |
World ranks (Giaccio et al., 2012) | 2–200 | 0.1–200 | 1–800 | 0.01–2 |
World ranks (Monton-Bermea et al., 2009) | 1–1500 | 0.1–250 | 1–1500 | 0.01–2 |
Upstream Area | Pb | Cu | Zn | Cd |
---|---|---|---|---|
Mean | 76.43 | 21.14 | 301.86 | 2.01 |
Geometric mean | 66.11 | 20.35 | 252.76 | 1.74 |
Median (Me) | 61.00 | 20.00 | 354.00 | 1.44 |
Standard deviation (SD) | 51.91 | 5.73 | 158.15 | 1.20 |
Minimum | 41.00 | 11.00 | 88.00 | 0.78 |
Maximum | 188.00 | 27.00 | 526.00 | 3.88 |
Variable coefficient (%) | 67.92 | 27.09 | 52.39 | 59.53 |
25th percentile | 43.50 | 19.00 | 208.50 | 1.29 |
75th percentile | 79.00 | 26.00 | 364.00 | 2.70 |
Proposed geochemical baseline values | 169.93 | 31.81 | 569.06 | 4.13 |
Mining Area | Pb | Cu | Zn | Cd |
Mean | 625.33 | 9.00 | 143.33 | 5.67 |
Geometric mean | 527.32 | 8.43 | 136.04 | 4.85 |
Median (Me) | 653.00 | 10.00 | 111.00 | 5.37 |
Standard deviation (SD) | 387.24 | 3.61 | 59.50 | 3.57 |
Minimum | 225.00 | 5.00 | 107.00 | 2.26 |
Maximum | 998.00 | 12.00 | 212.00 | 9.38 |
Variable coefficient (%) | 61.93 | 40.06 | 41.51 | 62.95 |
Kurtosis | −1.35 | −2.60 | −0.78 | 0.27 |
Skewness | 0.28 | −0.39 | −0.09 | 0.80 |
25th percentile | 439.00 | 7.50 | 109.00 | 3.82 |
75th percentile | 825.50 | 11.00 | 161.50 | 7.38 |
Upstream | Pb | Cu | Zn | Cd |
Mean | 36.20 | 7.80 | 19.80 | 0.57 |
Geometric mean | 33.52 | 6.95 | − | − |
Median (Me) | 35.00 | 9.00 | 10.00 | 0.27 |
Standard deviation (SD) | 16.30 | 3.70 | 30.12 | 0.58 |
Minimum | 20.00 | 3.00 | 0.00 | 0.00 |
Maximum | 62.00 | 12.00 | 73.00 | 1.33 |
Variable coefficient (%) | 45.03 | 47.45 | 152.12 | 101.66 |
Kurtosis | 1.34 | −1.81 | 4.51 | −2.31 |
Skewness | 1.11 | −0.38 | 2.10 | 0.61 |
25th percentile | 25.00 | 5.00 | 4.00 | 0.21 |
75th percentile | 39.00 | 10.00 | 12.00 | 1.04 |
Downstream | Pb | Cu | Zn | Cd |
Mean | 87.45 | 6.91 | 87.27 | 2.09 |
Geometric mean | 59.45 | 6.27 | 47.48 | 1.17 |
Median (Me) | 51.00 | 5.00 | 54.00 | 1.18 |
Standard deviation (SD) | 86.75 | 3.48 | 90.36 | 2.16 |
Minimum | 19.00 | 4.00 | 13.00 | 0.23 |
Maximum | 287.00 | 14.00 | 245.00 | 5.75 |
Variable coefficient (%) | 99.19 | 50.33 | 103.54 | 103.33 |
Kurtosis | 1.85 | 0.22 | −0.33 | −0.69 |
Skewness | 1.60 | 1.26 | 1.02 | 1.00 |
25th percentile | 30.50 | 5.00 | 14.00 | 0.41 |
75th percentile | 110.50 | 8.50 | 124.00 | 3.37 |
X | Y | Equation | F | R | N | p |
---|---|---|---|---|---|---|
pH in surface soil | Pb concentrations in surface soil | Y = −648.7 + 174.4X | 14.561 | 0.679 | 19 | 0.001 |
Zn concentrations in surface soil | Y = −1541.8 + 417.2X | 14.799 | 0.682 | 19 | 0.001 | |
Cd concentrations in surface soil | Y = −19.2 + 5.6X | 9.678 | 0.602 | 19 | 0.006 | |
pH in subsurface soil | Pb concentrations in subsurface soil | Y = −975.9 + 238.4X | 12.937 | 0.693 | 16 | 0.003 |
Zn concentrations in subsurface soil | Y = −1814.6 + 461.0X | 11.651 | 0.674 | 16 | 0.004 | |
Cd concentrations in subsurface soil | Y = −21.2 + 5.3X | 12.557 | 0.685 | 16 | 0.003 | |
Pb concentrations in surface soil | Pb concentrations in subsurface soil | Y = 122.5 + 0.8X | 95.154 | 0.934 | 16 | 0.000 |
Cu concentrations in surface soil | Cu concentrations in subsurface soil | Y = 7.5 + 0.5X | 11.782 | 0.676 | 16 | 0.004 |
Zn concentrations in surface soil | Zn concentrations in subsurface soil | Y = 240.7 + 1.0X | 105.685 | 0.940 | 16 | 0.000 |
Cd concentrations in surface soil | Cd concentrations in subsurface soil | Y = 5.9 + 1.1X | 22.766 | 0.787 | 16 | 0.000 |
EDTA-extractable Pb concentrations in surface soil | Pb concentrations in surface soil | Y = −14.5 + 0.76X | 312.050 | 0.974 | 19 | 0.000 |
EDTA-extractable Cu concentrations in surface soil | Cu concentrations in surface soil | Y = 2.1 + 0.37X | 5.164 | 0.483 | 19 | 0.036 |
EDTA-extractable Zn concentrations in surface soil | Zn concentrations in surface soil | Y = 49.2 + 0.05X | 5.428 | 0.492 | 19 | 0.032 |
EDTA-extractable Cd concentrations in surface soil | Cd concentrations in surface soil | Y = 0.4 + 0.21X | 173.951 | 0.954 | 10 | 0.000 |
Mining Area | Pi | IN | |||
Pb | Cu | Zn | Cd | ||
Mean | 2.87 | 0.13 | 7.66 | 47.46 | 35.10 |
Median (Me) | 3.44 | 0.13 | 10.44 | 58.88 | 43.61 |
Standard deviation (SD) | 1.47 | 0.03 | 4.89 | 22.60 | 16.77 |
Minimum (Min) | 1.20 | 0.11 | 2.02 | 21.43 | 15.78 |
Maximum (Max) | 3.98 | 0.16 | 10.53 | 62.07 | 45.91 |
Upstream | Pi | IN | |||
Pb | Cu | Zn | Cd | ||
Mean | 0.34 | 0.33 | 1.28 | 6.37 | 4.75 |
Median (Me) | 0.30 | 0.38 | 1.62 | 6.33 | 4.66 |
Standard deviation (SD) | 0.17 | 0.08 | 0.77 | 3.34 | 2.44 |
Minimum (Min) | 0.18 | 0.22 | 0.44 | 2.60 | 2.03 |
Maximum (Max) | 0.63 | 0.40 | 2.10 | 11.67 | 8.62 |
Downstream | Pi | IN | |||
Pb | Cu | Zn | Cd | ||
Mean | 0.48 | 0.26 | 1.54 | 20.52 | 15.06 |
Median (Me) | 0.27 | 0.26 | 0.61 | 10.87 | 7.97 |
Standard deviation (SD) | 0.36 | 0.07 | 1.60 | 23.22 | 17.00 |
Minimum (Min) | 0.19 | 0.16 | 0.40 | 1.37 | 1.05 |
Maximum (Max) | 1.23 | 0.40 | 4.51 | 69.20 | 50.68 |
Mining Area | Igeo | IIN | |||
Pb | Cu | Zn | Cd | ||
Mean | 0.62 | −0.56 | −0.17 | 0.01 | 1.34 |
Median (Me) | −0.10 | −0.69 | −0.36 | 0.11 | 0.70 |
Standard deviation (SD) | 1.95 | 0.35 | 0.44 | 0.33 | 1.40 |
Minimum (Min) | −0.87 | −0.83 | −0.48 | −0.36 | 0.38 |
Maximum (Max) | 2.84 | −0.17 | 0.33 | 0.28 | 2.94 |
Upstream | Igeo | IIN | |||
Pb | Cu | Zn | Cd | ||
Mean | −0.03 | −2.08 | −0.49 | 0.30 | 0.91 |
Median (Me) | −0.03 | −2.08 | −0.49 | 0.30 | 0.91 |
Standard deviation (SD) | 0.65 | 0.55 | 0.20 | 0.78 | 0.02 |
Minimum (Min) | −0.49 | −2.47 | −0.63 | −0.25 | 0.89 |
Maximum (Max) | 0.43 | −1.69 | −0.35 | 0.86 | 0.92 |
Downstream | Igeo | IIN | |||
Pb | Cu | Zn | Cd | ||
Mean | 2.05 | −0.45 | 1.88 | 2.73 | 3.30 |
Median (Me) | 2.42 | −0.50 | 1.34 | 3.04 | 3.31 |
Standard deviation (SD) | 1.21 | 0.44 | 1.33 | 1.99 | 1.91 |
Minimum (Min) | 0.45 | −1.03 | 0.12 | 0.07 | 0.96 |
Maximum (Max) | 3.59 | 0.42 | 3.84 | 5.15 | 5.88 |
Mining Area | Eri | RI | |||
Pb | Cu | Zn | Cd | ||
Mean | 21.56 | 5.18 | 1.54 | 46.11 | 74.39 |
Median (Me) | 6.99 | 4.64 | 1.62 | 48.71 | 67.70 |
Standard deviation (SD) | 27.76 | 1.30 | 0.34 | 10.10 | 33.35 |
Minimum (Min) | 4.12 | 4.23 | 1.17 | 34.96 | 44.88 |
Maximum (Max) | 53.57 | 6.67 | 1.82 | 54.66 | 110.57 |
Upstream | Eri | RI | |||
Pb | Cu | Zn | Cd | ||
Mean | 7.74 | 0.78 | 1.08 | 1.99 | 72.30 |
Median (Me) | 7.74 | 0.78 | 1.08 | 1.99 | 72.30 |
Standard deviation (SD) | 3.37 | 0.11 | 0.15 | 1.03 | 33.53 |
Minimum (Min) | 5.36 | 0.70 | 0.97 | 1.26 | 48.60 |
Maximum (Max) | 10.12 | 0.86 | 1.18 | 2.71 | 96.01 |
Downstream | Eri | RI | |||
Pb | Cu | Zn | Cd | ||
Mean | 41.34 | 5.76 | 8.12 | 599.67 | 592.86 |
Median (Me) | 40.00 | 5.31 | 3.81 | 372.50 | 395.85 |
Standard deviation (SD) | 30.05 | 2.01 | 7.51 | 615.80 | 645.81 |
Minimum (Min) | 10.22 | 3.67 | 1.63 | 47.31 | 21.00 |
Maximum (Max) | 90.29 | 10.00 | 21.54 | 1596.92 | 1698.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Deblon, J.; Zu, Y.; Colinet, G.; Li, B.; He, Y. Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China). Int. J. Environ. Res. Public Health 2019, 16, 4686. https://doi.org/10.3390/ijerph16234686
Li Z, Deblon J, Zu Y, Colinet G, Li B, He Y. Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China). International Journal of Environmental Research and Public Health. 2019; 16(23):4686. https://doi.org/10.3390/ijerph16234686
Chicago/Turabian StyleLi, Zuran, Judith Deblon, Yanqun Zu, Gilles Colinet, Bo Li, and Yongmei He. 2019. "Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China)" International Journal of Environmental Research and Public Health 16, no. 23: 4686. https://doi.org/10.3390/ijerph16234686
APA StyleLi, Z., Deblon, J., Zu, Y., Colinet, G., Li, B., & He, Y. (2019). Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China). International Journal of Environmental Research and Public Health, 16(23), 4686. https://doi.org/10.3390/ijerph16234686