Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology for Sampling and Laboratory Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baltrėnas, P.; Butkus, D.; Oškinis, V.; Vasarevičiu, S.; Zigmontienė, A. Aplinkos Apsauga/Environmental; Technika: Vilnius, Lithuania, 2008. [Google Scholar]
- Bagdžiūnaitė-Litvinaitė, L. Research and Evaluation of Biogenic Material Changes in River Water (Biogeninių Medžiagų Kaitos Upių Vandenyje Tyrimai ir Įvertinimas). Ph.D. Thesis, Vilniaus Gedinimo Technikos Universitetas, Vilnius, Lithuania, 2005. [Google Scholar]
- Battarbee, R.W.; Morley, D.; Bennion, H.; Simpson, G.L.; Hughes, M.; Bauere, V. A palaeolimnological meta-database for assessing the ecological status of lakes. J. Paleolimnol. 2011, 45, 405–414. [Google Scholar] [CrossRef]
- Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Takolander, A.; Cabeza, M.; Leskinen, E. Climate change can cause complex responses in Baltic Sea macroalgae: A systematic review. J. Sea Res. 2017, 123, 16–29. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef]
- Li, A.; Beek, T.A.D.; Schubert, M.; Yu, Z.; Schiedek, T.; Schüth, C. Sedimentary archive of polycyclic aromatic hydrocarbons and perylene sources in the northern part of Taihu Lake, China. Environ. Pollut. 2019, 246, 198–206. [Google Scholar] [CrossRef]
- Bhagowati, B.; Ahamad, K.U. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Hei, P.; Zhang, Y.; Shang, Y.; Lei, X.; Quan, J.; Zhang, M. An approach to minimizing the uncertainty caused by sediment washing pretreatment in phosphorus adsorption experiments. Ecol. Eng. 2017, 107, 244–251. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, F.; Lou, W.; Li, D.; Chen, J. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ. 2017, 605–606, 172–179. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Yin, H.; Kong, M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap. J. Environ. Manag. 2015, 151, 178–185. [Google Scholar] [CrossRef]
- Li, C.; Yu, H.; Tabassum, S.; Li, L.; Mu, Y.; Wu, D.; Zhang, Z.; Kong, H.; Xu, P. Effect of calcium silicate hydrates coupled with Myriophyllum spicatum on phosphorus release and immobilization in shallow lake sediment. Chem. Eng. J. 2018, 331, 462–470. [Google Scholar] [CrossRef]
- Žilius, M.; Zemlys, P.; Ferrarin, C.H.; Bartoli, M.; Giordani, G.; Paškauskas, R. Kuršių marių dugno nuosėdų maistingųjų medžiagų ir jų poveikio Kuršių marių ekosistemai tyrimai (Studies of Nutrients in the Bottom Sediments of the Curonian Lagoon and Their Impact on the Ecosystem of the Curonian Lagoon). Available online: https://am.lrv.lt/uploads/am/documents/files/0_811693001478766490.pdf (accessed on 18 October 2019).
- Šaulys, V. Water Protection Policy and Law (Vandens Apsaugos Politika ir Teisė). Available online: https://www.ebooks.vgtu.lt/product/vanden-apsaugos-politika-teis-ir-ekonomika (accessed on 18 October 2019).
- Wang, H.; Wang, C.; Wu, W.; Mo, Z.; Wang, Z. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Chemosphere 2003, 50, 557–562. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Goldyn, R. Internal loading of phosphorus from sediments of Swarzędzkie Lake (Western Poland). Pol. J. Environ. Stud. 2009, 18, 635–643. [Google Scholar]
- LST EN 16179:2012 Dumblas, Apdorotos Bioatliekos ir Dirvožemis. Nurodymai dėl Parengiamojo Ėminių Apdorojimo Sludge, Treated Biowaste and Soil—Guidance for Sample Pretreatment EN 16179:2012. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030233699 (accessed on 18 October 2019).
- LST EN ISO 5667-13:2011 Vandens Kokybė. Mėginių Ėmimas. 13 Dalis. Nurodymai, kaip imti dumblo mėginius (ISO 5667-13:2011) Water Quality-Sampling—Part 13: Guidance on Sampling of Sludges (ISO 5667-13:2011) EN ISO 5667-13:2011. Available online: https://www.iso.org/standard/45450.html (accessed on 18 October 2019).
- LST EN ISO 5667-15:2009 Vandens Kokybė. Mėginių Ėmimas. 15 Dalis. Dumblo ir Nuosėdų Mėginių Konservavimo ir Apdorojimo Vadovas (ISO 5667-15:2009) Water quality-Sampling—Part 15: Guidance on the Preservation and Handling of Sludge and Sediment Samples (ISO 5667-15:2009) EN ISO 5667-15:2009. Available online: https://www.iso.org/standard/42892.html (accessed on 18 October 2019).
- LST EN ISO 5667-14:2016 Vandens Kokybė. Mėginių Ėmimas. 14 Dalis. Gamtinio Vandens Mėginių Ėmimo ir Tvarkymo Kokybės Užtikrinimo bei Kokybės Kontrolės Nurodymai (ISO 5667-14:2014) Water Quality-Sampling—Part 14: Guidance on Quality Assurance and Quality Control of Environmental Water Sampling and Handling (ISO 5667-14:2014) EN ISO 5667-14:2016. Available online: https://www.iso.org/standard/55452.html (accessed on 18 October 2019).
- LST EN ISO 6878:2004 Vandens Kokybė. Fosforo Nustatymas. Spektrometrinis Metodas, Vartojant Amonio Molibdatą (ISO 6878:2004) Water Quality-Determination of Phosphorus—Ammonium Molybdate Spectrometric Method (ISO 6878:2004) EN ISO 6878:2004. Available online: https://www.iso.org/standard/36917.html (accessed on 18 October 2019).
- LST EN ISO 17184:2014 Dirvožemio Kokybė. Anglies ir Azoto Nustatymas Taikant Artimąją Infraraudonąją Spektrometriją (ISO 17184:2014) Soil Quality—Determination of Carbon and Nitrogen by Near-Infrared Spectrometry (NIRS) (ISO 17184:2014) EN ISO 17184:2014. Available online: https://www.iso.org/standard/59262.html (accessed on 18 October 2019).
- LST EN 13039:2012 Dirvožemio Gerinimo Medžiagos ir Auginimo Terpės. Organinių Medžiagų ir Pelenų Kiekio Nustatymas Soil Improvers and Growing Media—Determination of Organic Matter Content and Ash EN 13039:2011. Available online: https://www.en-standard.eu/bs-en-13039-2011-soil-improvers-and-growing-media-determination-of-organic-matter-content-and-ash/?gclid=EAIaIQobChMI5a7Rxfv85QIV1qqWCh2TaQ-gEAAYASAAEgJVsfD_BwE (accessed on 18 October 2019).
- LST EN 12260:2004 Vandens Kokybė. Azoto Nustatymas. Sujungtojo Azoto (TNb) Nustatymas Oksiduojant jį į Azoto Oksidą Water Quality—Determination of Nitrogen—Determination of Bound Nitrogen (TNb), following Oxidation to Nitrogen Oxides EN 12260:2003. Available online: https://infostore.saiglobal.com/en-us/Standards/UNE-EN-12260-2004-7762_SAIG_AENOR_AENOR_17562/ (accessed on 18 October 2019).
- LST EN 27888:1999 Vandens Kokybė. Savitojo Elektrinio Laidžio Nustatymas (ISO 7888:1985) Water Quality—Determination of Electrical Conductivity (ISO 7888:1985) EN 27888:1993. Available online: https://www.evs.ee/products/evs-en-27888-1999 (accessed on 18 October 2019).
- LST EN ISO 10523:2012 Vandens Kokybė. pH Nustatymas (ISO 10523:2008) Water Quality—Determination of pH (ISO 10523:2008) EN ISO 10523:2012. Available online: https://www.iso.org/standard/51994.html (accessed on 18 October 2019).
- LST EN 26777:1999 Vandens Kokybė. Nitrito Kiekio Nustatymas. Molekulinės Absorbcijos Spektrometrinis Metodas (ISO 6777:1984) Water Quality—Determination of Nitrite—Molecular Absorption Spectrometric Method (ISO 6777:1984) EN 26777:1993. Available online: https://infostore.saiglobal.com/en-us/Standards/PN-EN-26777-1999-956621_SAIG_PKN_PKN_2246239/ (accessed on 18 October 2019).
- LST ISO 7890-3:1998 Vandens Kokybė. Nitratų Kiekio Nustatymas. 3 Dalis. Spektrometrinis Metodas, Vartojant Sulfosalicilo Rūgštį Water Quality. Determination of Nitrate. Part 3: Spectrometric Method Using Sulfosalicylic Acid ISO 7890-3:1988. Available online: https://www.iso.org/standard/14842.html (accessed on 18 October 2019).
- LST ISO 7150-1:1998 Vandens Kokybė. Amonio Kiekio Nustatymas. 1 Dalis. Rankinis Spektrometrinis Metodas Water Quality. Determination of Ammonium. Part 1: Manual Spectrometric Method ISO 7150-1:1984. Available online: https://www.iso.org/standard/13742.html (accessed on 18 October 2019).
- Hill, T.; Levicki, P. Statistics Methods and Applications; StatSoft: Madison, WI, USA, 2005. [Google Scholar]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R. Internal phosphorus loading in selected lakes of the Cybina River valley. Oceanol. Hydrobiol. Stud. 2010, 39, 35–45. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Kovar, J.L.; Pierzynski, G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters Second Edition. 2009. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.5702&rep=rep1&type=pdf (accessed on 18 October 2019).
- Shao, X.; Liang, X.; Wu, M.; Gu, B.; Li, W.; Sheng, X.; Wang, S. Influences of sediment properties and macrophytes on phosphorous speciation in the intertidal marsh. Environ. Sci. Pollut. Res. 2014, 21, 10432–10441. [Google Scholar] [CrossRef]
- Richardson, C.J. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 1985, 228, 1424–1427. [Google Scholar] [CrossRef]
- Petticrew, E.L.; Arocena, J.M. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci. Total Environ. 2001, 266, 87–93. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Dondajewska, R. Internal phosphorus loading from bottom sediments of a shallow preliminary reservoir. Oceanol. Hydrobiol. Stud. 2008, 37, 89–97. [Google Scholar] [CrossRef]
- Joniak, T.; Kuczyńska-Kippen, N. The chemistry of water and bottom sediments in relation to zooplankton biocenosis in small agricultural ponds. Oceanol. Hydrobiol. Stud. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- Murphy, T.; Lawson, A.; Kumagai, M.; Nalewajko, C. Release of phosphorus from sediments in Lake Biwa. Limnology 2001, 2, 119–128. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Gołdyn, R.; Dera, M. Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecol. Eng. 2015, 74, 187–195. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Baran, S.; Wójcikowska-Kapusta, A.; Obroślak, R. Nitrogen and phosphorus in bottom sediments of two small dam reservoirs. Pol. J. Environ. Stud. 2013, 22, 1479–1489. [Google Scholar]
- Dabrowska, J.; Lejcus, K. Charakterystyka osadów dennych zbiornika Dobromierz. Infrastrukt. Ekol. Terenów Wiej. 2012, 3, 89–98. [Google Scholar]
- Karwacka, A.; Niedzielski, P.; Staniszewski, R. Ocena stanu osadów dennych wybranych jezior powiatu poznańskiego. Rocz. Ochr. Śr. 2015, 17, 1684–1698. [Google Scholar]
- Rozpondek, R.; Wancisiewicz, K. Analiza rozkładu zanieczyszczeń w osadach dennych z zastosowaniem GIS w przybrzeżnej strefie zbiornika wodnego Ostrowy na rzece Biała Oksza. Inż. Ochr. Sr. 2016, 19, 37–49. [Google Scholar] [CrossRef]
- Kleeberg, A.; Dudel, G. Changes in extent of phosphorus release in a shallow lake (Lake Groβer Müggelsee; Germany, Berlin) due to climatic factors and load. Mar. Geol. 1997, 139, 61–75. [Google Scholar] [CrossRef]
- Sudha, V.; Ambujam, N.K. Longitudinal heterogeneity of sediment characteristics during southwest monsoon season in hyper-eutrophic Krishnagiri reservoir, India. Environ. Monit. Assess. 2012, 184, 1287–1298. [Google Scholar] [CrossRef]
- Swan, B.K.; Watts, J.M.; Reifel, K.M.; Hurlbert, S.H. Role of the polychaete Neanthes succinea in phosphorus regeneration from sediments in the Salton Sea, California. Hydrobiologia 2007, 576, 111–125. [Google Scholar] [CrossRef]
- Golterman, H.L. The Chemistry of Phosphate and Nitrogen Compounds in Sediments; Kluwer Academic Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
Number | Lake | Average Depth of the Lake, m | Sludge Layer Thickness m | NT (Sludge) mg/L | PT (Sludge) mg/L | Organic Matter Content % (Sludge) |
---|---|---|---|---|---|---|
1 | Biržulis | 0.9 | 1.9 | 14,238.4 | 479.6 | 32.9 |
2 | Antakmenis | 5.8 | 2.7 | 12,144.7 | 725.3 | 32.4 |
3 | Gauštvinis | 5 | 4.3 | 8464.5 | 674 | 27.6 |
4 | Spėra | 1.85 | 4.7 | 18,078.0 | 980.5 | 43.1 |
5 | Kiementas | 4 | 6.1 | 21,415.0 | 898.0 | 46.9 |
Number | N Total mg/L | NO2-N mg/L |
---|---|---|
1 | Y Birzulis = 3.312 + 0.5577x − 0.0131x2, r = 0.863 | YBirzulis = 0.0167 + 0.0008x + 4.6356E − 5x2; r = 0.98 |
2 | YAntakmeniu = 1.1729 + 0.2463x − 0.0026x2; r = 0.975 | YAntakmeniu = 0.0283 + 0.0013x − 3.14111E − 5x2; r = 0.971 |
3 | YGaustvinis = 4.5323 + 0.2396x − 0.0037x2; r = 0.944 | YGauštvinis = 0.0269 + 0.0009x; r = 0.96 |
4 | YSpera = 4.6234 + 0.6687x − 0.0162x2; r = 0.883 | YSpera = 0.0243 + 0.0034x − 9.7668E − 5x2; r = 0.885 |
5 | YKiementas = 4.8806 + 0.808x − 0.0225x2; r = 0.928 | YKiementas = 0.023 + 0.0011x; r = 0.969 * |
0 ≤ x ≤ 2.0 |
Number | NO3-N mg/L | Electrical Conductivity (C) µS/cm |
---|---|---|
1 | YBiržulis = 0.0344 + 0.0049x; r = 0.963 | YBiržulis = 649.2857 + 1.0327x − 0.0175x2; r = 0.94 |
2 | YAntakmeniu = 0.0263 + 0.0029x; r = 0.97 | YAntakmeniu = 653.1714 + 4.2939x − 0.137x2; r = 0.982 * |
3 | YGauštvinis = 0.0303 + 0.0026x; r = 0.985 * | YGauštvinis = 655.8 + 2.4286x; r = 0.938 * |
4 | YSpera = 0.0542 + 0.0107x − 0.0003x2; r = 0.994 * | YSpera = 628.4 + 2.7x − 0.0714x2; r = 0.98 * |
5 | YKiementas = 0.0515 + 0.0111x − 0.0003x2; r = 0.975 | YKiementas = 653.7429 + 2.8735x − 0.07x2; r = 0.942 |
0 ≤ x ≤ 2.0 |
Number | P total mg/L | PO4-P mg/L |
---|---|---|
1 | Y Birzulis = 0.0815 + 0.0003x − 2.629E-5 * x2; r = 0.909 | YBiržulis = 0.1227 + 0.0242x; r = 0.987 |
2 | YAntakmeniu = 0.09 − 0.0013x; r = 0.998 * | YAntakmeniu = 0.1267 + 0.0342x − 0.0009x2; r = 0.958 |
3 | YGaustvinis = 0.1112 + 0.0007x − 2.2886E − 5 * x2; r = 0.781 | YGaustvinis = 0.0486 + 0.0879x − 0.0016x2; r = 0.908 |
4 | YSpera = 0.1061 + 0.0035x − 0.0002x2; r = 0.87 | YSpera = 0.067 + 0.0307x − 0.0006x2; r = 0.92 |
5 | YKiementas = 0.13 − 3.3061E − 5x − 3.207E − 6Ex2; r = 0.998 * | YKiementas = 0.1349 + 0.13x; r = 0.82 |
0 ≤ x ≤ 2.0 |
Number | pH | NH4-N mg/L |
---|---|---|
1 | YBiržulis = 7.264 + 0.0783x − 0.0018x2; r = 0.974 | YBiržulis = 0.0183 − 0.0106x + 0.0006x2, r = 0.92 |
2 | YAntakmeniu = 7.1877 + 0.0805x − 0.0021x2; r = 0.978 | YAntakmeniu = 0.0119 + 0.0029x − 0.0001x2, r = 0.39 |
3 | YGauštvinis = 7.2446 + 0.0787x − 0.002x2; r = 0.958 | YGauštvinis = 0.0114 − 0.0074x + 0.0004x2, r = 0.95 |
4 | YSpera = 7.2551 + 0.0544x − 0.0009x2; r = 0.942 | YSpera = 0.0004 + 0.0005x, r = 0.88 |
5 | YKiementas = 7.302 + 0.078x − 0.002x2; r = 0.975 | YKiementas = 0.0061 − 0.0035x + 0.0002x2, r = 0.92 |
0 ≤ x ≤ 2.0 |
Parameter | PT mg/L | NT mg/L | NH4-N mg/L | NO2-N mg/L | NO3-N mg/L | PO4-P mg/L |
---|---|---|---|---|---|---|
SEC µS/cm | r = −0.945 p = 0.000 | r = 0.966 p = 0.000 | r = −0.001 p = 0.998 | r = −0.559 p = 0.150 | r = 0.787 p = 0.049 | r = −0.033 p = 0.938 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Česonienė, L.; Mažuolytė-Miškinė, E.; Šileikienė, D.; Lingytė, K.; Bartkevičius, E. Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters. Int. J. Environ. Res. Public Health 2019, 16, 4691. https://doi.org/10.3390/ijerph16234691
Česonienė L, Mažuolytė-Miškinė E, Šileikienė D, Lingytė K, Bartkevičius E. Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters. International Journal of Environmental Research and Public Health. 2019; 16(23):4691. https://doi.org/10.3390/ijerph16234691
Chicago/Turabian StyleČesonienė, Laima, Edita Mažuolytė-Miškinė, Daiva Šileikienė, Kristina Lingytė, and Edmundas Bartkevičius. 2019. "Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters" International Journal of Environmental Research and Public Health 16, no. 23: 4691. https://doi.org/10.3390/ijerph16234691
APA StyleČesonienė, L., Mažuolytė-Miškinė, E., Šileikienė, D., Lingytė, K., & Bartkevičius, E. (2019). Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters. International Journal of Environmental Research and Public Health, 16(23), 4691. https://doi.org/10.3390/ijerph16234691