Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Measures
2.2.1. Activity Monitoring
2.2.2. Neuropsychological Test Battery
Episodic Memory
Processing Speed
Executive Functions
Working Memory
2.2.3. Cardiorespiratory Fitness
2.2.4. Statistical Analysis
3. Results
3.1. Effects of Average Daily MVPA and SB
3.2. Effects of Bouts of MVPA and SB
3.3. Associations Analysed Seperately for Fitter and Less Fit Office Workers
4. Discussion
4.1. Effects of Average Daily MVPA and SB
4.2. Prolonged Bouts of MVPA and SB
4.3. MVPA and SB for Different Levels of Fitness
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, Exercise, and physical Fitness—Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Thivel, D.; Tremblay, A.; Genin, P.M.; Panahi, S.; Riviere, D.; Duclos, M. Physical activity, inactivity, and sedentary behaviors: Definitions and implications in occupational health. Front. Public Health 2018, 6, 288. [Google Scholar] [CrossRef]
- Pantzar, A.; Jonasson, L.S.; Ekblom, O.; Boraxbekk, C.J.; Ekblom, M.M. Relationships between aerobic fitness levels and cognitive performance in Swedish office workers. Front. Psychol. 2018, 9. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General; Department of Health and Human Services, Centres for Decease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion: Atlanta, GA, USA, 1996; pp. 61–102.
- Stillman, C.M.; Cohen, J.; Lehman, M.E.; Erickson, K.I. Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Front. Hum. Neurosci. 2016, 10, 626. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef]
- Cox, E.P.; O’Dwyer, N.; Cook, R.; Vetter, M.; Cheng, H.L.; Rooney, K.; O’Connor, H. Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J. Sci. Med. Sport 2016, 19, 616–628. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Connor Gorber, S.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef]
- Hadgraft, N.T.; Healy, G.N.; Owen, N.; Winkler, E.A.; Lynch, B.M.; Sethi, P.; Eakin, E.G.; Moodie, M.; LaMontagne, A.D.; Wiesner, G.; et al. Office workers’ objectively assessed total and prolonged sitting time: Individual-level correlates and worksite variations. Prev. Med. Rep. 2016, 4, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary behavior research network (SBRN)—terminology consensus project process and outcome. Int. J. Beha. Nutr. Phys. Act. 2017, 14. [Google Scholar] [CrossRef]
- Bellettiere, J.; Winkler, E.A.H.; Chastin, S.F.M.; Kerr, J.; Owen, N.; Dunstan, D.W.; Healy, G.N. Associations of sitting accumulation patterns with cardio-metabolic risk biomarkers in Australian adults. PLoS ONE 2017, 12, e0180119. [Google Scholar] [CrossRef]
- Falck, R.S.; Davis, J.C.; Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2016, 51, 800–811. [Google Scholar] [CrossRef]
- Rosenberg, D.E.; Bellettiere, J.; Gardiner, P.A.; Villarreal, V.N.; Crist, K.; Kerr, J. Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 78–83. [Google Scholar] [CrossRef]
- Lagersted-Olsen, J.; Korshoj, M.; Skotte, J.; Carneiro, I.G.; Sogaard, K.; Holtermann, A. Comparison of objectively measured and self-reported time spent sitting. Int. J. Sports Med. 2014, 35, 534–540. [Google Scholar] [CrossRef]
- Bjorkman, F.; Ekblom-Bak, E.; Ekblom, O.; Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 2016, 116, 1627–1638. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nystrom, C.; Mora-Gonzalez, J.; Lof, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Trost, S.G.; McIver, K.L.; Pate, R.R. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sports Exerc. 2005, 37, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Peeters, G.; van Gellecum, Y.; Ryde, G.; Farias, N.A.; Brown, W.J. Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers? J. Sci. Med. Sport 2013, 16, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Farias, N.; Brown, W.J.; Peeters, G.M. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J. Sci. Med. Sport 2014, 17, 293–299. [Google Scholar] [CrossRef]
- Jonasson, L.S.; Nyberg, L.; Kramer, A.F.; Lundquist, A.; Riklund, K.; Boraxbekk, C.J. Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Front. Aging Neurosci. 2017, 8, 336. [Google Scholar] [CrossRef]
- Boucard, G.K.; Albinet, C.T.; Bugaiska, A.; Bouquet, C.A.; Clarys, D.; Audiffren, M. Impact of physical activity on executive functions in aging: A selective effect on inhibition among old adults. J. Sport Exer. Psychol. 2012, 34, 808–827. [Google Scholar] [CrossRef]
- Vasquez, E.; Strizich, G.; Isasi, C.R.; Echeverria, S.E.; Sotres-Alvarez, D.; Evenson, K.R.; Gellman, M.D.; Palta, P.; Qi, Q.; Lamar, M.; et al. Is there a relationship between accelerometer-assessed physical activity and sedentary behavior and cognitive function in US Hispanic/Latino adults? The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Prev. Med. 2017, 103, 43–48. [Google Scholar] [CrossRef]
- Boraxbekk, C.J.; Lundquist, A.; Nordin, A.; Nyberg, L.; Nilsson, L.G.; Adolfsson, R. Free recall episodic memory performance predicts dementia ten years prior to clinical diagnosis: Findings from the betula longitudinal study. Dement. Geriatr. Cogn. Disord. Extra 2015, 5, 191–202. [Google Scholar] [CrossRef]
- Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef]
- Dall, P.M.; Coulter, E.H.; Fitzsimons, C.F.; Skelton, D.A.; Chastin, S.; Seniors, U.S.P.T. TAxonomy of self-reported sedentary behaviour tools (TASST) framework for development, comparison and evaluation of self-report tools: Content analysis and systematic review. BMJ Open 2017, 7, e013844. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Etnier, J.L.; Nowell, P.M.; Landers, D.M.; Sibley, B.A. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res. Rev. 2006, 52, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridolfsson, J.; Borjesson, M.; Arvidsson, D. A Biomechanical re-examination of physical activity measurement with accelerometers. Sensors 2018, 18, 3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozemek, C.; Cochran, H.L.; Strath, S.J.; Byun, W.; Kaminsky, L.A. Estimating relative intensity using individualized accelerometer cutpoints: The importance of fitness level. BMC Med. Res. Methodol. 2013, 13, 53. [Google Scholar] [CrossRef] [Green Version]
- Global Recomendations on Physical Activity for Health; WHO: Geneva, Switserland, 2010.
- Loprinzi, P.D. Accumulated short bouts of physical activity are associated with reduced premature all-cause mortality: Implications for physician promotion of physical activity and revision of current US government physical activity guidelines. Mayo Clin. Proc. 2015, 90, 1168–1169. [Google Scholar] [CrossRef] [Green Version]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Wanigatunga, A.A.; Manini, T.M.; Cook, D.R.; Katula, J.; Fielding, R.A.; Kramer, A.F.; Verghese, J.; Rapp, S.R.; Sink, K.M.; King, A.C.; et al. Community-based activity and sedentary patterns are associated with cognitive performance in mobility-limited older adults. Front. Aging Neurosci. 2018, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Felez-Nobrega, M.; Hillman, C.H.; Dowd, K.P.; Cirera, E.; Puig-Ribera, A. ActivPAL determined sedentary behaviour, physical activity and academic achievement in college students. J. Sports Sci. 2018, 36, 2311–2316. [Google Scholar] [CrossRef]
- Wennberg, P.; Boraxbekk, C.J.; Wheeler, M.; Howard, B.; Dempsey, P.C.; Lambert, G.; Eikelis, N.; Larsen, R.; Sethi, P.; Occleston, J.; et al. Acute effects of breaking up prolonged sitting on fatigue and cognition: A pilot study. BMJ Open 2016, 6, 9630–9639. [Google Scholar] [CrossRef] [Green Version]
- Stoner, L.; Willey, Q.; Evans, W.S.; Burnet, K.; Credeur, D.P.; Fryer, S.; Hanson, E.D. Effects of acute prolonged sitting on cerebral perfusion and executive function in young adults: A randomized cross-over trial. Psychophysiology 2019, 56, e13457. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Green, D.J.; Ellis, K.A.; Cerin, E.; Heinonen, I.; Naylor, L.H.; Larsen, R.; Wennberg, P.; Boraxbekk, C.J.; Lewis, J.; et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. Br. J. Sports Med. 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Hansen, J.V.; Burr, H.; Sogaard, K.; Sjogaard, G. The health paradox of occupational and leisure-time physical activity. Br. J. Sports Med. 2012, 46, 291–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Descriptive | n | Min | Max | Mean | SD |
---|---|---|---|---|---|
Age (year) | 334 | 21 | 66 | 42.43 | 9.12 |
Education (year) | 334 | 9 | 22 | 14.43 | 2.29 |
VO2max (mL⋅kg−1⋅min−1) † | 334 | 18.50 | 62.27 | 39.99 | 8.33 |
% in MVPA ‡ | 334 | 1.70 | 17.22 | 6.76 | 2.42 |
% in Sedentary | 334 | 34.47 | 76.09 | 59.13 | 7.00 |
Daily average time in MVPA bouts (min/day) | 334 | 0.00 | 99.00 | 25.44 | 19.45 |
Daily average time in sedentary bouts (min/day) | 334 | 39.40 | 486.30 | 217.82 | 84.91 |
Average length of MVPA bout (min) | 334 | 0.00 | 69.50 | 18.49 | 7.08 |
Average length of sedentary bouts (min) | 334 | 26.00 | 49.50 | 33.53 | 3.75 |
Female | 68% | ||||
Fulfil recommendation of 150 min/week of MVPA in bouts of 10 min | 48% | ||||
Fulfil recommendation of 150 min/week of all MVPA | 99.7% | ||||
Stroop colour and word (seconds) | 333 | 30.32 | 103.40 | 48.13 | 9.52 |
TMT-B (seconds) § | 289 | 24.00 | 113.25 | 50.97 | 14.41 |
2–back (accuracy, Max = 80.00) | 332 | 25.00 | 80.00 | 72.08 | 7.39 |
Digit symbol (mean ms for correct response) | 333 | 1405.30 | 3389.92 | 2208.59 | 364.55 |
TMT-A (seconds) § | 332 | 11.19 | 44.66 | 20.65 | 5.92 |
2–back (mean milliseconds) | 331 | 542.21 | 1153.06 | 795.49 | 121.33 |
Free recall (recalled words, Max = 16) | 333 | 2.00 | 15.00 | 8.60 | 2.46 |
Word recognition (recalled words, Max = 30) | 333 | 12.00 | 30.00 | 23.44 | 3.82 |
Digit span backwards (highest span achieved) | 333 | 2.00 | 8.00 | 5.27 | 1.39 |
AOS (sum of perfectly recalled sets) ¶ | 307 | 3.00 | 49.00 | 19.59 | 10.82 |
AOS (accuracy, number of letters in correct position) | 308 | 5.00 | 53.00 | 33.85 | 9.23 |
Cognitive function | Model 1 † | Model 2 ‡ | Model 3 § | Model 4 ¶ | ||
---|---|---|---|---|---|---|
Log % in MVPA | % in SB | Log % in MVPA | VO2max | % in SB | VO2max | |
Executive functions | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) |
Stroop (2xlog) | −0.011 (−0.152 to 0.130) | 0.012 (−0.131 to 0.155) | 0.012 (−0.130 to 0.155) | −0.159 * (−0.332 to 0.013) | −0.016 (−0.162 to 0.129) | −0.161 * (−0.334 to 0.013) |
TMT-B | 0.034 (−0.116 to 0.182) | −0.032 (−0.194 to 0.126) | 0.044 (−0.109 to 0.196) | −0.065 (−0.260 to 0.130) | −0.044 (−0.210 to 0.118) | −0.065 (−0.261 to 0.130) |
2–back | −0.001 (−0.141 to 0.140) | 0.053 (−0.088 to 0.197) | −0.004 (−0.147 to 0.139) | 0.022 (−0.150 to 0.195) | 0.060 (−0.085 to 0.207) | 0.037 (−0.137 to 0.210) |
Processing speed | ||||||
Digit symbol | 0.001 (−0.138 to 0.141) | −0.004 (−0.145 to 0.138) | 0.008 (−0.134 to 0.150) | −0.045 (−0.216 to 0.126) | −0.012 (−0.157 to 0.133) | −0.047 (−0.219 to 0.126) |
TMT-A (2xlog) | 0.013 (−0.130 to 0.156) | 0.042 (−0.103 to 0.190) | 0.017 (−0.129 to 0.162) | −0.025 (−0.202 to 0.152) | 0.040 (−0.108 to 0.191) | −0.012 (−0.190 to 0.166) |
2–back RT (log) | 0.075 (−0.064 to 0.214) | −0.053 (−0.195 to 0.087) | 0.074 (−0.067 to 0.216) | 0.004 (−0.168 to 0.175) | −0.052 (−0.198 to 0.092) | 0.006 (−0.167 to 0.179) |
Cognitive Function | Model 1 † | Model 2 ‡ | Model 3 § | Model 4 ¶ | ||
---|---|---|---|---|---|---|
Log % in MVPA | % in SB | Log % in MVPA | VO2max | % in SB | VO2max | |
Working memory | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) |
Digit span backwards | −0.006 (−0.146 to 0.133) | 0.003 (−0.139 to 0.146) | −0.001 (−0.143 to 0.141) | −0.037 (−0.209 to 0.136) | −0.003 (−0.149 to 0.142) | −0.038 (−0.211 to 0.136) |
AOS recalled sets | 0.062 (−0.080 to 0.206) | −0.011 (−0.159 to 0.136) | 0.046 (−0.098 to 0.191) | 0.110 (−0.064 to 0.280) | 0.010 (−0.140 to 0.161) | 0.122 (−0.052 to 0.293) |
AOS accuracy | 0.064 (−0.074 to 0.203) | −0.022 (−0.165 to 0.120) | 0.052 (−0.089 to 0.194) | 0.079 (−0.090 to 0.244) | −0.006 (−0.152 to 0.140) | 0.089 (−0.081 to 0.256) |
Episodic memory | ||||||
Free recall | −0.017 (−0.154 to 0.121) | 0.125 * (−0.011 to 0.266) | −0.021 (−0.161 to 0.118) | 0.031 (−0.138 to 0.199) | 0.136 * (−0.003 to 0.280) | 0.061 (−0.107 to 0.229) |
Word recognition | 0.045 (−0.095 to 0.185) | 0.035 (−0.107 to 0.177) | 0.018 (−0.123 to 0.158) | 0.187 ** (0.017 to 0.358) | 0.071 (−0.071 to 0.215) | 0.209 ** (0.038 to 0.380) |
Cognitive function | Model 1 † | Model 2 ‡ | Model 3 § | Model 4 ¶ |
---|---|---|---|---|
Daily avg MVPA bouts | Length of MVPA bouts | Daily avg MVPA bouts | Length of MVPA bouts | |
Executive functions | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) |
Stroop (2xlog) | −0.078 (−0.216 to 0.061) | −0.155 ** (−0.293 to −0.017) | −0.049 (−0.191 to 0.094) | −0.134 * (−0.275 to 0.006) |
TMT-B (log) | 0.000 (−0.148 to 0.148) | −0.077 (−0.228 to 0.075) | 0.012 (−0.142 to 0.165) | −0.070 (−0.227 to 0.086) |
2–back accuracy | −0.001 (−0.139 to 0.137) | 0.102 (−0.036 to 0.241) | −0.006 (−0.149 to 0.137) | 0.103 (−0.038 to 0.245) |
Processing speed | ||||
Digit symbol | 0.028 (−0.109 to 0.165) | −0.068 (−0.206 to 0.069) | 0.040 (−0.102 to 0.181) | −0.063 (−0.204 to 0.077) |
TMT-A (2xlog) | 0.036 (−0.105 to 0.176) | −0.092 (−0.235 to 0.049) | 0.042 (−0.103 to 0.187) | −0.092 (−0.238 to 0.052) |
2–back RT (log) | 0.109 (−0.028 to 0.245) | −0.048 (−0.186 to 0.090) | 0.112 (−0.030 to 0.252) | −0.054 (−0.195 to 0.087) |
Working memory | ||||
Digit span backwards | −0.003 (−0.140 to 0.134) | 0.019 (−0.120 to 0.157) | 0.005 (−0.137 to 0.147) | 0.026 (−0.115 to 0.168) |
AOS recalled sets | 0.080 (−0.060 to 0.218) | 0.038 (−0.104 to 0.182) | 0.058 (−0.086 to 0.201) | 0.017 (−0.129 to 0.163) |
AOS accuracy | 0.067 (−0.069 to 0.202) | −0.016 (−0.155 to 0.123) | 0.051 (−0.090 to 0.191) | −0.035 (−0.177 to 0.107) |
Episodic memory | ||||
Free recall | −0.010 (−0.145 to 0.125) | 0.019 (−0.117 to 0.155) | −0.016 (−0.156 to 0.123) | 0.015 (−0.124 to 0.154) |
Word recognition | 0.059 (−0.079 to 0.197) | −0.058 (−0.196 to 0.081) | 0.022 (−0.119 to 0.162) | −0.095 (−0.234 to 0.045) |
Cognitive function | Model 1 † | Model 2 ‡ | Model 3 § | Model 4 ¶ |
---|---|---|---|---|
Daily avg SB bouts | Length of SB bouts | Daily avg SB bouts | Length of SB bouts | |
Executive functions | β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) |
Stroop (2xlog) | −0.005 (−0.149 to 0.138) | 0.066 (−0.076 to 0.209) | −0.022 (−0.166 to 0.121) | 0.061 (−0.079 to 0.204) |
TMT-B (log) | 0.008 (−0.148 to 0.164) | 0.107 (−0.045 to 0.261) | 0.003 (−0.155 to 0.160) | 0.106 (−0.047 to 0.260) |
2–back accuracy | −0.001 (−0.143 to 0.142) | −0.034 (−0.177 to 0.107) | 0.001 (−0.142 to 0.145) | −0.034 (−0.176 to 0.108) |
Processing speed | ||||
Digit symbol | −0.015 (−0.156 to 0.126) | 0.020 (−0.121 to 0.161) | −0.019 (−0.162 to 0.122) | 0.018 (−0.122 to 0.160) |
TMT-A (2xlog) | 0.071 (−0.072 to 0.217) | 0.067 (−0.076 to 0.212) | 0.070 (−0.074 to 0.217) | 0.067 (−0.076 to 0.212) |
2–back RT (log) | 0.020 (−0.121 to 0.162) | 0.055 (−0.085 to 0.196) | 0.023 (−0.119 to 0.166) | 0.056 (−0.084 to 0.197) |
Working memory | ||||
Digit span backwards | 0.003 (−0.139 to 0.146) | 0.018 (−0.123 to 0.160) | −0.001 (−0.144 to 0.143) | 0.017 (−0.125 to 0.159) |
AOS recalled sets | −0.074 (−0.219 to 0.068) | −0.036 (−0.180 to 0.107) | −0.063 (−0.208 to 0.080) | −0.033 (−0.177 to 0.110) |
AOS accuracy | −0.079 (−0.220 to 0.059) | −0.060 (−0.199 to 0.078) | −0.070 (−0.212 to 0.069) | −0.057 (−0.195 to 0.081) |
Episodic memory | ||||
Free recall | 0.095 (−0.040 to 0.236) | 0.036 (−0.102 to 0.175) | 0.100 (−0.037 to 0.242) | 0.037 (−0.101 to 0.176) |
Word recognition | 0.046 (−0.095 to 0.189) | 0.030 (−0.111 to 0.172) | 0.067 (−0.073 to 0.210) | 0.036 (−0.104 to 0.176) |
Split on VO2max | Low vs High | Model 1 † | Model 2 ‡ |
---|---|---|---|
Log % in MVPA β (99% CI) | % in SB β (99% CI) | ||
Stroop (2xlog) | Low fitness | −0.024 (−0.229 to 0.181) | 0.021 (−0.177 to 0.217) |
High fitness | 0.037 (−0.156 to 0.230) | −0.011 (−0.230 to 0.205) | |
Word recognition | Low fitness | 0.067 (−0.137 to 0.273) | −0.004 (−0.201 to 0.194) |
High fitness | 0.003 (−0.189 to 0.195) | 0.113 (−0.096 to 0.336) |
Split on VO2max | Model 1 † | Model 2 ‡ | Model 3 § | Model 4 ¶ | |
---|---|---|---|---|---|
Cognitive function | Low vs High | Daily avg MVPA bouts | Daily avg SB bouts | Length of MVPA bouts | Length of SB bouts |
β (99% CI) | β (99% CI) | β (99% CI) | β (99% CI) | ||
Stroop (2xlog) | Low Fitness | −0.071 (−0.296 to 0.145) | 0.032 (−0.166 to 0.226) | −0.211 ** (−0.494 to −0.013) | 0.134 (−0.069 to 0.316) |
High Fitness | −0.029 (−0.204 to 0.150) | −0.046 (−0.275 to 0.169) | −0.079 (−0.236 to 0.097) | 0.006 (−0.210 to 0.222) | |
Word recognition | Low Fitness | 0.025 (−0.194 to 0.249) | 0.034 (−0.163 to 0.229) | 0.056 (−0.177 to 0.317) | −0.007 (−0.201 to 0.188) |
High Fitness | 0.054 (−0.129 to 0.223) | 0.075 (−0.139 to 0.304) | −0.216 ** (−0.340 to −0.016) | 0.096 (−0.113 to 0.317) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojsen-Møller, E.; Boraxbekk, C.-J.; Ekblom, Ö.; Blom, V.; Ekblom, M.M. Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers. Int. J. Environ. Res. Public Health 2019, 16, 4721. https://doi.org/10.3390/ijerph16234721
Bojsen-Møller E, Boraxbekk C-J, Ekblom Ö, Blom V, Ekblom MM. Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers. International Journal of Environmental Research and Public Health. 2019; 16(23):4721. https://doi.org/10.3390/ijerph16234721
Chicago/Turabian StyleBojsen-Møller, Emil, Carl-Johan Boraxbekk, Örjan Ekblom, Victoria Blom, and Maria M. Ekblom. 2019. "Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers" International Journal of Environmental Research and Public Health 16, no. 23: 4721. https://doi.org/10.3390/ijerph16234721
APA StyleBojsen-Møller, E., Boraxbekk, C. -J., Ekblom, Ö., Blom, V., & Ekblom, M. M. (2019). Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers. International Journal of Environmental Research and Public Health, 16(23), 4721. https://doi.org/10.3390/ijerph16234721