Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Colony Maintenance
2.2. Insect Feeding Substrates
2.3. Insect Rearing
2.4. Laboratory and Apparatus
2.5. Chemical Analyses and Quality Control
2.6. Bioaccumulation Factor and Risk Assessment Analyses
2.7. Data Treatment and Statistical Analysis
3. Results and Discussion
3.1. Cadmium
3.2. Lead
3.3. Nickel
3.4. Arsenic
3.5. Mercury
3.6. Selenium Health Benefit Values: Mercury Risk Assessments
3.7. Heavy Metals Content in T. molitor Larvae and Comparison with Legal Limit for Food
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agricultural Organization (FAO) of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Vargas, A.; Randazzo, B.; Riolo, P.; Truzzi, C.; Gioacchini, G.; Giorgini, E.; Loreto, N.; Ruschioni, S.; Zarantoniello, M.; Antonucci, M.; et al. Rearing zebrafish on black soldier fly (Hermetia illucens): Biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish 2018, 15, 404–419. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Bruni, L.; Randazzo, B.; Vargas, A.; Gioacchini, G.; Truzzi, C.; Annibaldi, A.; Riolo, P.; Parisi, G.; Cardinaletti, G.; et al. Partial dietary inclusion of Hermetia illucens (Black Soldier Fly) full-fat prepupae in zebrafish feed: Biometric, histological, biochemical, and molecular implications. Zebrafish 2018, 15, 519–532. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 19, 339–346. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Scientific opinion on risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257–4317. [Google Scholar] [CrossRef]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed Sci. Technol. 2019, 259, 114309. [Google Scholar] [CrossRef]
- Bednarska, A.J.; ZuzannaŚwiątek, Z. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour. Ecotoxicol. Environ. Saf. 2016, 133, 82–89. [Google Scholar] [CrossRef]
- Lindqvist, L. Accumulation of Cadmium, Copper, and Zinc in Five Species of Phytophagous Insects. Environ. Entomol. 1992, 21, 160–163. [Google Scholar] [CrossRef]
- Zhuang, P.; Zou, H.; Shu, W. Biotransfer of heavy metals along a soil-plantinsect-chicken food chain: Field study. J. Environ. Sci. 2009, 21, 849–853. [Google Scholar] [CrossRef]
- Devkota, B.; Schmidt, G.H. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agric. Ecosyst. Environ. 2000, 78, 85–91. [Google Scholar] [CrossRef]
- Gaylor, M.O.; Harvey, E.; Hale, R.C. House crickets can accumulate polybrominated diphenyl ethers (PBDEs) directly from polyurethane foam common in consumer products. Chemosphere 2012, 86, 500–505. [Google Scholar] [CrossRef]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef]
- Schiefenhövel, W.; Blum, P. Insects: Forgotten and rediscovered as food. Entomophagy among the Eipo, highlands of West New Guinea, and in other traditional societies. In Consuming the Inedible; MacClancy, J., Henry, J., Macbeth, H., Eds.; Berghaghn Books: New York, NY, USA, 2009; pp. 163–176. [Google Scholar]
- Johnson, D.V. The contribution of edible forest insects to human nutrition and forest management. In Forest Insects as Food: Humans Bite Back; Food and Agricultural Organization (FAO) of the United Nations, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 5–22. [Google Scholar]
- Mlcek, J.; Rop, O.; Borkovcova, M.; Bednarova, M. A comprehensive look at the possibilities of edible insects as food in Europe: A review. Pol. J. Food Nutr. Sci. 2014, 64, 147–157. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Z.; Liu, H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 2013, 92, 103–109. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Jędras, M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci. 2013, 4, 287–291. [Google Scholar]
- Vijver, M.; Jager, T.; Posthuma, L.; Peijnenburg, W. Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicol. Environ. Saf. 2003, 54, 277–289. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Borja, R.; Raposo, F.; Rincón, B. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Y Aceites 2006, 57, 32–46. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Guillén, R.; Jiménez, A. Extraction of interesting organic compounds from olive oil waste. Grasas Y Aceites 2006, 57, 95–106. [Google Scholar] [CrossRef]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive-derived biomass as a source of energy and chemicals. Biofuels Bioprod. Biorefin. 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, F. Mercury–selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury–selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef]
- Park, K.; Mozaffarian, D. Omega-3 fatty acids, mercury, and selenium in fish and the risk of cardiovascular diseases. Curr. Atheroscler. Rep. 2010, 12, 414–422. [Google Scholar] [CrossRef]
- Sakamoto, M.; Yasutake, A.; Kakita, A.; Ryufuku, M.; Chan, H.M.; Yamamoto, M.; Oumi, S.; Kobayashi, S.; Watanabe, C. Selenomethionine protects against neuronal de-generation by methylmercury in the developing rat cerebrum. Environ. Sci. Technol. 2013, 47, 2862–2868. [Google Scholar] [CrossRef]
- Li, X.; Yin, D.; Yin, J.; Chen, Q.; Wang, R. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem. Toxicol. 2014, 72, 169–177. [Google Scholar] [CrossRef]
- Hu, X.F.; Eccles, K.M.; Chan, H.M. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environ. Int. 2017, 102, 200–206. [Google Scholar] [CrossRef]
- Broekhovenv, V.S.; Oonincx, D.G.; Huis, V.A.; Loon, V.J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cortes Ortiz, J.A.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Insect mass production technologies. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 153–201. [Google Scholar]
- Dreassi, E.; Cito, A.; Zanfini, A.; Materozzi, L.; Botta, M.; Francardi, V. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 2017, 52, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Milanović, V.; Cardinali, F.; Garofalo, C.; Clementi, F.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Loreto, N.; Galarini, R.; et al. Distribution of transferable antibiotic resistance genes in laboratory-reared edible mealworms (Tenebrio molitor L.). Front. Microbiol. 2018, 9, 2702. [Google Scholar] [CrossRef] [PubMed]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Scarponi, G. Recent Temporal Variations of Trace Metal Content in an Italian White Wine. Food Chem. 2014, 159, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Morgano, M.A.; Milani, R.F.; Perrone, A.A.M. Determination of total mercury in sushi samples employing direct mercury analyser. Food Anal. Methods 2015, 8, 2301–2307. [Google Scholar] [CrossRef]
- Annibaldi, A.; Truzzi, C.; Carnevali, O.; Pignalosa, P.; Api, M.; Scarponi, G.; Illuminati, S. Determination of Hg in farmed and wild atlantic bluefin tuna (Thunnus thynnus L.) muscle. Molecules 2019, 24, 1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Fels-Klerx, H.J.; Camenzuli, L.; Van der Lee, M.K.; Oonincx, D.G.A.B. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS ONE 2016, 11, e0166186. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Ralston, C.R.; Raymond, L.J. Selenium health benefit values: Updated criteria for mercury risk assessments. Biol. Trace Elem. Res. 2016, 171, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Daniel, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences, 10th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Statgraphics Centurion 18 Software. Manugistics Inc.: Rockville, MD, USA, 2018. Available online: http://www.statgraphics.com/centurion-xviii (accessed on 30 November 2019).
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Codling, E.E.; Chaney, R.L.; Green, C.E. Accumulation of lead and arsenic by carrots grown on lead-arsenate contaminated orchard soils. J. Plant Nutr. 2015, 38, 509–525. [Google Scholar] [CrossRef]
- Boudou, A.; Ribeyre, F. Metal Ions in Biological Systems, Vol. 34: “Mercury and its Effects on Environment and Biology”. Met. Based Drugs 1997, 4, 287. [Google Scholar] [CrossRef] [Green Version]
- Kidd, K.; Clayden, M.; Jardine, T. Bioaccumulation and biomagnification of mercury through food webs. In Environmental Chemistry and Toxicology of Mercury; Liu, G., Cai, Y., O’Driscoll, N., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 455–499. [Google Scholar]
- Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: Recent insights into functions and regulation. Cell. Mol. Life Sci. 2009, 66, 2457–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health & Human Services the Office of Dietary Supplements (ODS) of the National Institutes of Health (NIH). Selenium Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/ (accessed on 18 December 2018).
- Hyun, S.H.; Kwon, K.H.; Park, K.H.; Jeong, H.C.; Kwon, O.; Tindwa, H.; Han, Y.S. Evaluation of nutritional status of an edible grasshopper, Oxya Chinensis Formosana. Entomol. Res. 2012, 42, 284–290. [Google Scholar] [CrossRef]
Element | Analytical Method | Analytical Results | Certified Values | Δ (%) |
---|---|---|---|---|
Cd | GF-AAS | 0.044 ± 0.002 | 0.043 ± 0.008 | +2 |
Pb | GF-AAS | 0.069 ± 0.004 | 0.065 ± 0.007 | +6 |
Ni | GF-AAS | 17.2 ± 0.3 | 19.4 ± 3.1 | −11 |
As | GF-AAS | 17.0 ± 0.7 | 18 ± 1.1 | −5.5 |
Hg | DMA-1 | 4.43 ± 0.05 | 4.58 ± 0.16 | +3 |
Se | GF-AAS | 1.41 ± 0.02 | 1.40 ± 0.09 | −1 |
Element | 100% Organic Wheat Flour | 100% Organic Wheatmeal | 75/25 * | 50/50 * | 25/75 * |
---|---|---|---|---|---|
Cd | 1.7 ± 0.2 | 0.8 ± 0.1 | 0.9 ± 0.1 | 1.4 ± 0.1 | 1.9 ± 0.2 |
Pb | 34 ± 4 | 5.2 ± 0.4 | 6.1 ± 0.5 | 9.8 ± 0.9 | 12 ± 1 |
Ni | 0.17 ± 0.04 | 0.36 ± 0.08 | 0.43 ± 0.05 | 0.61 ± 0.08 | 1.18 ± 0.12 |
As | 1.07 ± 0.07 | 0.64 ± 0.03 | 0.67 ± 0.08 | 0.53 ± 0.04 | 0.57 ± 0.02 |
Hg | 6.2 ± 1.1 | 1.9 ± 0.3 | 1.5 ± 0.2 | 1.5 ± 0.2 | 1.8 ± 0.2 |
Se | 1.7 ± 0.3 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | 1.7 ± 0.3 |
Metals | 100% Organic Wheat Flour | 100% Organic Wheatmeal | 75/25 | 50/50 | 25/75 | Legal Limit (a,b) |
---|---|---|---|---|---|---|
Cd | 0.011 ± 0.001 | 0.016 ± 0.002 | 0.011 ± 0.001 | 0.008 ± 0.001 | 0.011 ± 0.002 | 0.05 (meat) a |
Pb | 0.066 ± 0.008 | 0.079 ± 0.005 | 0.066 ± 0.004 | 0.063 ± 0.005 | 0.073 ± 0.003 | 0.1 (meat) a |
Ni | 0.030 ± 0.007 | 0.26 ± 0.05 | 0.30 ± 0.03 | 0.47 ± 0.04 | 0.63 ± 0.04 | Not reported |
As | 0.021 ± 0.001 | 0.023 ± 0.001 | 0.022 ± 0.002 | 0.021 ± 0.001 | 0.021 ± 0.001 | 0.20 (rice) b |
Hg | 0.12 × 10−3 ± 0.01 × 10−3 | 0.26 × 10−3 ± 0.03 × 10−3 | 0.28 × 10−3 ± 0.01 × 10−3 | 0.38 × 10−3 ± 0.03 × 10−3 | 0.49 × 10−3 ± 0.04 × 10−3 | 0.5 (fish) a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truzzi, C.; Illuminati, S.; Girolametti, F.; Antonucci, M.; Scarponi, G.; Ruschioni, S.; Riolo, P.; Annibaldi, A. Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption. Int. J. Environ. Res. Public Health 2019, 16, 4815. https://doi.org/10.3390/ijerph16234815
Truzzi C, Illuminati S, Girolametti F, Antonucci M, Scarponi G, Ruschioni S, Riolo P, Annibaldi A. Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption. International Journal of Environmental Research and Public Health. 2019; 16(23):4815. https://doi.org/10.3390/ijerph16234815
Chicago/Turabian StyleTruzzi, Cristina, Silvia Illuminati, Federico Girolametti, Matteo Antonucci, Giuseppe Scarponi, Sara Ruschioni, Paola Riolo, and Anna Annibaldi. 2019. "Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption" International Journal of Environmental Research and Public Health 16, no. 23: 4815. https://doi.org/10.3390/ijerph16234815
APA StyleTruzzi, C., Illuminati, S., Girolametti, F., Antonucci, M., Scarponi, G., Ruschioni, S., Riolo, P., & Annibaldi, A. (2019). Influence of Feeding Substrates on the Presence of Toxic Metals (Cd, Pb, Ni, As, Hg) in Larvae of Tenebrio molitor: Risk Assessment for Human Consumption. International Journal of Environmental Research and Public Health, 16(23), 4815. https://doi.org/10.3390/ijerph16234815