Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Enzymatic Activity in Buffer Systems
2.3. Preparation and Characterization of Nanofibers
2.3.1. Scanning Electron Microscopy
2.3.2. Fourier Transform Infrared Attenuated Total Reflectance
2.3.3. Differential Scanning Calorimetry
2.4. Enzyme Immobilization
2.5. HPLC Analysis
2.6. Product Extraction
2.7. Products Identification
2.8. Enzymatic Oxidation of TBBPA in Environmental Water Samples
2.9. Biodegradability Determination
2.10. Toxicity Assays
3. Results
3.1. Nanofiber Preparation
3.1.1. Morphology
3.1.2. FTIR Characterization
3.1.3. Calorimetry Characterization
3.2. Enzyme Immobilization
3.3. Oxidation of TBBPA by the Free and the Immobilized CPO
3.3.1. Product identification
3.3.2. Product Biodegradability and Toxicity
3.3.3. pH Profile and Recyclability Assays
3.4. Enzymatic Oxidation of TBBPA in Environmental Water Samples
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Speight, J.G. Chapter 4—Sources and Types of Organic Pollutants. In Environmental Organic Chemistry for Engineers; Speight, J.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 153–201. [Google Scholar] [CrossRef]
- Lucas, D.; Petty, S.M.; Keen, O.; Luedeka, B.; Schlummer, M.; Weber, R.; Barlaz, M.; Yazdani, R.; Riise, B.; Rhodes, J.; et al. Methods of Re-sponsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part I. Environ. Eng. Sci. 2017, 35, 573–587. [Google Scholar] [CrossRef]
- Eljarrat, E.; Barceló, D. Brominated Flame Retardants; Springer: Barcelona, Spain, 2011; pp. 1–287. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J.; Lin, K. Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure. J. Hazard. Mater. 2014, 273, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, A.; Carlsson, H.; Thuresson, K.; Sjölin, S.; Bergman, Å.; Östman, C. Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ. Sci. Technol. 2001, 35, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Alemany, Ò.; Aminot, Y.; Vilà-Cano, J.; Köck-Schulmeyer, M.; Readman, J.W.; Marques, A.; Godinho, L.; Botteon, E.; Ferrari, F.; Boti, V.; et al. Halogenated and organophosphorus flame retardants in European aquaculture samples. Sci. Total Environ. 2018, 612, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; García Vázquez, A.; Barata, C.; Lacorte, S. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environ. Int. 2013, 59, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Song, M.; Zeng, L.; Wang, T.; Liu, R.; Ruan, T.; Jiang, G. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. Environ. Pollut. 2014, 186, 14–19. [Google Scholar] [CrossRef]
- Morris, S.; Allchin, C.R.; Zegers, B.N.; Haftka, J.J.H.; Boon, J.P.; Belpaire, C.; Leonards, P.E.G.; van Leeuwen, S.P.J.; de Boer, J. Distribution and Fate of HBCD and TBBPA Brominated Flame Retardants in North Sea Estuaries and Aquatic Food Webs. Environ. Sci. Technol. 2004, 38, 5497–5504. [Google Scholar] [CrossRef]
- Osako, M.; Kim, Y.-J.; Sakai, S.-I. Leaching of brominated flame retardants in leachate from landfills in Japan. Chemosphere 2004, 57, 1571–1579. [Google Scholar] [CrossRef]
- Driffield, M.; Harmer, N.; Bradley, E.; Fernandes, A.R.; Rose, M.; Mortimer, D.; Dicks, P. Determination of brominated flame retardants in food by LC–MS/MS: Diastereoisomer-specific hexabromocyclododecane and tetrabromobisphenol A. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2008, 25, 895–903. [Google Scholar] [CrossRef]
- Poma, G.; Malysheva, S.V.; Goscinny, S.; Malarvannan, G.; Voorspoels, S.; Covaci, A.; Van Loco, J. Occurrence of selected halogenated flame retardants in Belgian foodstuff. Chemosphere 2018, 194, 256–265. [Google Scholar] [CrossRef]
- Johnson-Restrepo, B.; Adams, D.H.; Kannan, K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 2008, 70, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, S.; Liu, H.; Yan, Z. Tetrabromobisphenol A: Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China. Environ. Sci. Pollut. Res. Int. 2012, 19, 4090–4096. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Flores, F.G.; Isac-García, J.; Dobado, J. Emerging Pollutants: Origin, Structure and Properties; Wiley-VCH: Weinheim, Germany, 2017; pp. 1–498. [Google Scholar] [CrossRef]
- Segev, O.; Kushmaro, A.; Brenner, A. Environmental impact of flame retardants (persistence and biodegradability). Int. J. Envron. Res. Public Health 2009, 6, 478–491. [Google Scholar] [CrossRef] [Green Version]
- McAvoy, D.C.; Pittinger, C.A.; Willis, A.M. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments. Ecotoxicol. Environ. Saf. 2016, 131, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, D.Y.; Kacew, S.; Dekant, W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in rodents. Food Chem. Toxicol. 2015, 80, 206–214. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Bukowska, B. Tetrabromobisphenol A—Toxicity, environmental and occupational exposures. Med. Pr. 2017, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Malkoske, T.; Tang, Y.; Xu, W.; Yu, S.; Wang, H. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. Sci. Total Environ. 2016, 569–570, 1608–1617. [Google Scholar] [CrossRef]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef] [Green Version]
- Batt, A.L.; Kim, S.; Aga, D.S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 2007, 68, 428–435. [Google Scholar] [CrossRef]
- Méndez, E.; González-Fuentes, M.A.; Rebollar-Perez, G.; Méndez-Albores, A.; Torres, E. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. J. Environ. Sci. Health A 2017, 52, 235–253. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Mahjoub, B.; Mahjoub, O.; Sillanpää, M. Remediation of Emerging Pollutants in Contaminated Wastewater and Aquatic Environments: Biomass-Based Technologies. Clean Soil Air Water 2017, 45, 1700101. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- García-Zamora, L.J.; León-Aguirre, K.; Quiroz-Morales, R.; Parra-Saldívar, R.; Gómez-Patiño, B.M.; Arrieta-Baez, D.; Rebollar-Pérez, G.; Torres, E. Chloroperoxidase-Mediated Halogenation of Selected Pharmaceutical Micropollutants. Catalysts 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Kües, U. Fungal enzymes for environmental management. Curr. Opin. Biotechnol. 2015, 33, 268–278. [Google Scholar] [CrossRef]
- Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal Laccases and Their Applications in Bioremediation. Enzym. Res. 2014, 2014, 21. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Zhou, Z.; Hartmann, M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem. Soc. Rev. 2013, 42, 3894–3912. [Google Scholar] [CrossRef]
- Gupta, M.; Kaloti, M.; Kapoor, M.; Solanki, K. Nanomaterials as Matrices for Enzyme Immobilization. Artif. Cells. Blood Substit. Immobil. Biotechnol. 2010, 39, 98–109. [Google Scholar] [CrossRef]
- Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef]
- Tighzert, W.; Habi, A.; Ajji, A.; Sadoun, T.; Daoud, F.B.O. Fabrication and characterization of nanofibers based on poly(lactic acid)/chitosan blends by electrospinning and their functionalization with phospholipase A1. Fibers Polym. 2017, 18, 514–524. [Google Scholar] [CrossRef]
- Wong, D.E.; Dai, M.; Talbert, J.N.; Nugen, S.R.; Goddard, J.M. Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. J. Mol. Catal. B Enzym. 2014, 110, 16–22. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; de Oliveira, D. Nanomaterials for biocatalyst immobilization—State of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Jiang, Y.; Hu, M.; Li, S.; Zhai, Q. Combination of enzymatic degradation by chloroperoxidase with activated sludge treatment to remove sulfamethoxazole: Performance, and eco-toxicity assessment. J. Chem. Technol. Biotechnol. 2016, 91, 2802–2809. [Google Scholar] [CrossRef]
- Longoria, A.; Tinoco, R.; Vázquez-Duhalt, R. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 2008, 72, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Robledo, N.R.; Velasco, L.; Quintero, R.; Pickard, M.A.; Vazquez-Duhalt, R. Chloroperoxidase-Mediated Oxidation of Organophosphorus Pesticides. Pestic. Biochem. Physiol. 1998, 61, 87–94. [Google Scholar] [CrossRef]
- Guerrero, E.; Aburto, P.; Terrés, E.; Villegas, O.; González, E.; Zayas, T.; Hernández, F.; Torres, E. Improvement of catalytic efficiency of chloroperoxidase by its covalent immobilization on SBA-15 for azo dye oxidation. J. Porous Mater. 2013, 20, 387–396. [Google Scholar] [CrossRef]
- Ayala, M.; Robledo, N.R.; Lopez-Munguia, A.; Vazquez-Duhalt, R. Substrate Specificity and Ionization Potential in Chloroperoxidase-Catalyzed Oxidation of Diesel Fuel. Environ. Sci. Technol. 2000, 34, 2804–2809. [Google Scholar] [CrossRef]
- Manoj, K.M.; Hager, L.P. A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Anal. Biochem. 2006, 348, 84–86. [Google Scholar] [CrossRef]
- OECD. Test. No. 301: Ready Biodegradabilit, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 1992; pp. 1–62. [Google Scholar] [CrossRef]
- Nunes, B.S.; Carvalho, F.D.; Guilhermino, L.M.; Stappen, G.V. Use of the genus Artemia in ecotoxicity testing. Environ. Pollut. 2006, 144, 453–462. [Google Scholar] [CrossRef]
- Rajabi, S.; Ramazani, A.; Hamidi, M.; Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru J. Fac. Pharm. Tehran Univ. Med. Sci. 2015, 23, 20. [Google Scholar] [CrossRef] [Green Version]
- Rebia, R.A.; Rozet, S.; Tamada, Y.; Tanaka, T. Biodegradable PHBH/PVA blend nanofibers: Fabrication, characterization, in vitro degradation, and in vitro biocompatibility. Polym. Degrad. Stab. 2018, 154, 124–136. [Google Scholar] [CrossRef]
- Choo, K.; Ching, C.Y.; Chuah, H.C.; Julai, S.; Liou, N.-S. Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials 2016, 9, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, J.; Fortunati, E.; Atarés, L.; Chiralt, A.; Kenny, J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll. 2014, 35, 463–470. [Google Scholar] [CrossRef]
- Pawlak, A.; Mucha, M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396, 153–166. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Xu, R.; Tang, R.; Liu, S.; Li, F.; Zhang, B. An environmentally-friendly enzyme-based nanofibrous membrane for 3,3′,5,5′-tetrabromobisphenol removal. RSC Adv. 2015, 5, 64091–64097. [Google Scholar] [CrossRef]
- Feng, Y.; Colosi, L.M.; Gao, S.; Huang, Q.; Mao, L. Transformation and Removal of Tetrabromobisphenol A from Water in the Presence of Natural Organic Matter via Laccase-Catalyzed Reactions: Reaction Rates, Products, and Pathways. Environ. Sci. Technol. 2013, 47, 1001–1008. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, K.; Gao, S.; Mao, L. The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes. Environ. Sci. Process. Impacts 2017, 19, 596–604. [Google Scholar] [CrossRef]
- Bao, Y.; Niu, J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors. Chemosphere 2015, 134, 550–556. [Google Scholar] [CrossRef]
- Sun, F.; Kolvenbach, B.A.; Nastold, P.; Jaing, B.; Ji, R.; Corvini, P.F.-X. Degradation and Metabolism of Tetrabromobisphenol A (TBBPA) in Submerged Soil and Soil–Plant Systems. Environ. Sci. Technol. 2014, 48, 14291–14299. [Google Scholar] [CrossRef]
- Han, Q.; Dong, W.; Wang, H.; Ma, H.; Liu, P.; Gu, Y.; Fan, H.; Song, X. Degradation of tetrabromobisphenol a by ozonation: Performance, products, mechanism and toxicity. Chemosphere 2019, 235, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhao, Z.; Qu, G.; Shen, Z.; Shi, J. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites *. Environ. Pollut. 2018, 243, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, E.A.; Gaviria-Restrepo, L.F.; Barrios-Ziolo, L.F.; Cardona-Gallo, S.A. Techniques to determine toxicity in industrial wastewater contaminated with dyes and pigments. DYNA 2018, 85, 316–327. [Google Scholar] [CrossRef]
- Libralato, G.; Prato, E.; Migliore, L.; Cicero, A.M.; Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 2016, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Blanke, S.R.; Martinis, S.A.; Sligar, S.G.; Hager, L.P.; Rux, J.J.; Dawson, J.H. Probing the Heme Iron Coordination Structure of Alkaline Chloroperoxidase. Biochemistry 1996, 35, 14537–14543. [Google Scholar] [CrossRef] [PubMed]
- Terrés, E.; Montiel, M.; Le Borgne, S.; Torres, E. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions. Biotechnol. Lett. 2008, 30, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Montiel, C.; Terrés, E.; Domínguez, J.-M.; Aburto, J. Immobilization of chloroperoxidase on silica-based materials for 4,6-dimethyl dibenzothiophene oxidation. J. Mol. Catal. B Enzym. 2007, 48, 90–98. [Google Scholar] [CrossRef]
- Aburto, J.; Ayala, M.; Bustos-Jaimes, I.; Montiel, C.; Terrés, E.; Domínguez, J.M.; Torres, E. Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous Mesoporous Mater. 2005, 83, 193–200. [Google Scholar] [CrossRef]
- Valderrama, B.; Ayala, M.; Vazquez-Duhalt, R. Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes. Chem. Biol. 2002, 9, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Hiner, A.N.P.; Hernández-Ruiz, J.; Rodríguez-López, J.N.; Arnao, M.B.; Varón, R.; García-Cánovas, F.; Acosta, M. The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: An example of partial resistance due to the formation of a stable enzyme intermediate. J. Biol. Inorg. Chem. 2001, 6, 504–516. [Google Scholar] [CrossRef]
Sample | Collection Distance (cm) | Collection Time (min) | Voltage (kV) | Average Fiber Diameter 1 (nm) |
---|---|---|---|---|
A | 20 | 60 | 30 | 222.0 ± 21.9 |
B | 15 | 30 | 25 | 184.4 ± 38.1 |
C | 20 | 30 | 25 | 239.6 ± 56.3 |
D | 20 | 60 | 20 | 224.0 ± 69.2 |
E | 20 | 60 | 25 | 318.0 ± 48.7 |
F | 15 | 60 | 20 | 212.9 ± 22.7 |
Formula | m/z | Chemical Structure | Error (ppm) | Reference |
---|---|---|---|---|
C15H12Br4O2 | 543.7333 | 3,3’,5,5’-tetrabromobisfenol A | 2.51 | This work |
C9H10Br2O2 | 309.9053 | 2-6-dibromo-4-(1-hydroxy-1-methylethyl) phenol | 2.49 | [52,53,55] |
4-(2-hydroxyisopropyl)-2,6-dibromophenol | ||||
2,6-dibromo-4-isopropyl-3-hydroxyphenol | ||||
C17H17Br3O2 | 493.8289 | 3,3’,5-tribromobisphenol A dimethyl ether | 16.25 | [54,56] |
Sample | BOD (mg O2/L) | COD (mg O2/L) | Biodegradability Index (%) | Inhibition 1 (%) |
---|---|---|---|---|
TBBPA | 21.7 | 308.0 | 7.0 | 80.6 |
Reaction products | 95.0 | 121.5 | 78.2 | 26.5 |
Water Source | TBBPA Conversion (%) | |
---|---|---|
30 min | 60 min | |
Buffer | 54.93 | 89.27 |
Distilled water (no pH control) | 52.87 | 92.46 |
Treated wastewater A 1 | 53.50 | 87.11 |
Treated wastewater B 2 | 58.62 | 95.23 |
Lagoon | 53.87 | 91.39 |
Nexapa River | 45.68 | 79.35 |
Chapa-Chapa River | 57.31 | 86.75 |
Groundwater | 54.86 | 90.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Zamora, J.L.; Santacruz-Vázquez, V.; Valera-Pérez, M.Á.; Moreira, M.T.; Cardenas-Chavez, D.L.; Tapia-Salazar, M.; Torres, E. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. Int. J. Environ. Res. Public Health 2019, 16, 4917. https://doi.org/10.3390/ijerph16244917
García-Zamora JL, Santacruz-Vázquez V, Valera-Pérez MÁ, Moreira MT, Cardenas-Chavez DL, Tapia-Salazar M, Torres E. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. International Journal of Environmental Research and Public Health. 2019; 16(24):4917. https://doi.org/10.3390/ijerph16244917
Chicago/Turabian StyleGarcía-Zamora, José Luis, Verónica Santacruz-Vázquez, Miguel Ángel Valera-Pérez, María Teresa Moreira, Diana L. Cardenas-Chavez, Mireya Tapia-Salazar, and Eduardo Torres. 2019. "Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase" International Journal of Environmental Research and Public Health 16, no. 24: 4917. https://doi.org/10.3390/ijerph16244917
APA StyleGarcía-Zamora, J. L., Santacruz-Vázquez, V., Valera-Pérez, M. Á., Moreira, M. T., Cardenas-Chavez, D. L., Tapia-Salazar, M., & Torres, E. (2019). Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. International Journal of Environmental Research and Public Health, 16(24), 4917. https://doi.org/10.3390/ijerph16244917