Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location and Sampling Methods
2.2. Chemical Analysis
2.2.1. Metal Analysis
2.2.2. Ion Analysis
2.2.3. Organic Compound Analysis
2.3. Exposure Solution Preparation
2.4. Cell Study
2.4.1. Cell Viability
2.4.2. Reactive Oxygen Species (ROS) Test
2.4.3. Umu Assay
3. Results and Discussion
3.1. PM2.5 Concentrations and Characteristics Measured at Different Stations
3.2. Cytotoxicity
3.2.1. Cell Viability
3.2.2. Reactive Oxygen Species (ROS) Test
3.2.3. Genotoxicity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget 2017, 8, 43322–43331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaschou-Nielsen, O.; Beelen, R.; Wang, M.; Hoek, G.; Andersen, Z.; Hoffmann, B.; Stafoggia, M.; Samoli, E.; Weinmayr, G.; Dimakopoulou, K. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016, 87, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Kang, S.; Anderson, H.; Mills, I.; Walton, H. Epidemiological time series studies of PM2. 5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014, 69, 660–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [PubMed]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of improved air quality with lung development in children. New Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldo, E.; Linares, C.; Lumbreras, J.; Borge, R.; Narros, A.; García-Pérez, J.; Fernández-Navarro, P.; Pérez-Gómez, B.; Aragonés, N.; Ramis, R. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ. Int. 2011, 37, 342–348. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.; Mocarelli, P.; Samuels, S.; Needham, L.; Brambilla, P.; Eskenazi, B. Dioxin exposure and cancer risk in the Seveso Women’s Health Study. Environ. Health Perspect. 2011, 119, 1700–1705. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H.; Huang, R.-J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473–474, 77–87. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.-S.; Shafer, M.M.; DeMinter, J.T.; Weinstein, J.P. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, G.; Zhang, R.; Zhang, L.; Song, Y.; Wu, B.; Li, X.; An, K.; Chu, J. Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Tsapakis, M.; Lagoudaki, E.; Stephanou, E.G.; Kavouras, I.G.; Koutrakis, P.; Oyola, P.; von Baer, D. The composition and sources of PM2.5 organic aerosol in two urban areas of Chile. Atmos. Environ. 2002, 36, 3851–3863. [Google Scholar]
- World Health Organization, Occupational and Environmental Health Team. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Xu, H.; Cao, J.; Chow, J.C.; Huang, R.-J.; Shen, Z.; Chen, L.A.; Ho, K.F.; Watson, J.G. Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: Evidences of changing source emissions. Sci. Total Environ. 2016, 545, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Shahid, I.; Kistler, M.; Mukhtar, A.; Ghauri, B.M.; Ramirez-Santa Cruz, C.; Bauer, H.; Puxbaum, H. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi–Pakistan. Atmos. Environ. 2016, 128, 114–123. [Google Scholar] [CrossRef]
- Khamkaew, C.; Chantara, S.; Wiriya, W. Atmospheric PM2.5 and its elemental composition from near source and receptor sites during open burning season in Chiang Mai, Thailand. Int. J. Environ. Sci. Dev. 2016, 7, 436–440. [Google Scholar] [CrossRef]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef]
- Yang, A.; Janssen, N.A.; Brunekreef, B.; Cassee, F.R.; Hoek, G.; Gehring, U. Children’s respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study. Occup. Environ. Med. 2016, 73, 154–160. [Google Scholar] [CrossRef]
- Chi, K.H.; Li, Y.N.; Hung, N.T. Spatial and Temporal Variation of PM2.5 and Atmospheric PCDD/Fs in Northern Taiwan during Winter Monsoon and Local Pollution Episodes. Aerosol Air Qual. Res. 2017, 17, 3151–3165. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-T.; Chou, W.-C.; Chio, C.-P.; Hsu, S.-C.; Su, Y.-R.; Kuo, P.-H.; Tsuang, B.-J.; Lin, S.-H.; Chou, C.C.-K. Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan. J. Atmos. Chem. 2008, 61, 155–173. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lin, C.C.; Liu, J.J.; Hsieh, C.J. Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area. Environ. Sci. Pollut. Res. Int. 2014, 21, 3744–3755. [Google Scholar] [CrossRef] [PubMed]
- Taiwan EPA. Motor Vehicle Registration Number and Density (Chinese Version); Taipei, Taiwan, 2018. Available online: https://erdb.epa.gov.tw/DataRepository/Statistics/StatSceAreapop.aspx (accessed on 12 November 2018).
- Ngo, T.H.; Hien, T.T.; Thuan, N.T.; Minh, N.H.; Chi, K.H. Atmospheric PCDD/F concentration and source apportionment in typical rural, Agent Orange hotspots, and industrial areas in Vietnam. Chemosphere 2017, 182, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Hamer, B.; Bihari, N.; Reifferscheid, G.; Zahn, R.K.; Müller, W.E.G.; Batel, R. Evaluation of the SOS/umu-test post-treatment assay for the detection of genotoxic activities of pure compounds and complex environmental mixtures. Mutat. Res. 2000, 466, 161–171. [Google Scholar] [CrossRef]
- Bihari, N.; Fafand¯el, M.; Hamer, B.; Kralj-Bilen, B. PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia. Sci. Total Environ. 2006, 366, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Chiang, H.-C.; Lin, S.-L.; Chen, M.-J.; Lin, T.-Y.; Chen, Y.-C. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ. 2016, 541, 1139–1150. [Google Scholar] [PubMed]
- Taipei City Government. Taipei Demographic Overview; 2016. Available online: https://english.gov.taipei/cp.aspx?n=C619997124A6D293 (accessed on 15 November 2018).
- Chang, H.-L.; Wu, S.-C. Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei. Transp. Res. Part A Policy Pract. 2008, 42, 307–320. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.G.; Yang, M.; Li, F.; Wang, J.; Sun, Y.; Wang, C.; Wu, H.; Qian, X. Chemical characterization and source apportionment of PM2. 5 aerosols in a megacity of Southeast China. Atmos. Res. 2016, 181, 288–299. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.; Chen, Y.; Chen, Z.; Xu, S. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chan, C.-C.; Chio, C.-P.; Lai, Y.-C.; Chang-Chien, G.-P.; Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chen, P.-C.; Wu, C.-F. Source apportionment of mass concentration and inhalation risk with long-term ambient PCDD/Fs measurements in an urban area. J. Hazard. Mater. 2016, 317, 180–187. [Google Scholar] [CrossRef]
- Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ. Pollut. 2004, 128, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lonati, G.; Giugliano, M.; Butelli, P.; Romele, L.; Tardivo, R. Major chemical components of PM2.5 in Milan (Italy). Atmos. Environ. 2005, 39, 1925–1934. [Google Scholar] [CrossRef]
- Jiang, N.; Guo, Y.; Wang, Q.; Kang, P.; Zhang, R.; Tang, X. Chemical composition characteristics of PM2.5 in three cities in Henan, central China. Aerosol Air Qual. Res. 2017, 17, 2367–2380. [Google Scholar] [CrossRef] [Green Version]
- MohseniBandpi, A.; Eslami, A.; Shahsavani, A.; Khodagholi, F.; Alinejad, A. Physicochemical characterization of ambient PM2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Sci. Total Environ. 2017, 593–594, 182–190. [Google Scholar] [CrossRef]
- Gualtieri, M.; Longhin, E.; Mattioli, M.; Mantecca, P.; Tinaglia, V.; Mangano, E.; Proverbio, M.C.; Bestetti, G.; Camatini, M.; Battaglia, C. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol. Lett. 2012, 209, 136–145. [Google Scholar] [CrossRef]
- Oh, S.M.; HKim, R.; Park, Y.J.; Lee, S.Y.; Chung, K.H. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutation Research/Genetic. Toxicol. Environ. Mutagenesis 2011, 723, 142–151. [Google Scholar] [CrossRef]
- Bocchi, C.; Bazzini, C.; Fontana, F.; Pinto, G.; Martino, A.; Cassoni, F. Characterization of urban aerosol: Seasonal variation of genotoxicity of the water-soluble portion of PM2.5 and PM1. Mutat. Res. 2019, 841, 23–30. [Google Scholar] [CrossRef]
- McDonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. Emissions from charbroiling and grilling of chicken and beef. J. Air Waste Manag. Assoc. 2003, 53, 185–194. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, T.H.; Tsai, P.C.; Ueng, Y.-F.; Chi, K.H. Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 5043. https://doi.org/10.3390/ijerph16245043
Ngo TH, Tsai PC, Ueng Y-F, Chi KH. Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan. International Journal of Environmental Research and Public Health. 2019; 16(24):5043. https://doi.org/10.3390/ijerph16245043
Chicago/Turabian StyleNgo, Tuan Hung, Pei Chun Tsai, Yune-Fang Ueng, and Kai Hsien Chi. 2019. "Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan" International Journal of Environmental Research and Public Health 16, no. 24: 5043. https://doi.org/10.3390/ijerph16245043
APA StyleNgo, T. H., Tsai, P. C., Ueng, Y. -F., & Chi, K. H. (2019). Cytotoxicity Assessment of PM2.5 Collected from Specific Anthropogenic Activities in Taiwan. International Journal of Environmental Research and Public Health, 16(24), 5043. https://doi.org/10.3390/ijerph16245043