Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Analysis
2.4. Risk Assessment
3. Results and Discussion
3.1. Toxic Trace Elements in Soil, Water, and Crops
3.2. Human Health Risk Assessment
3.3. Reclamation Options
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-abed, S.R.; Hageman, P.L.; Jegadeesan, G.; MAdhavan, N.; Allen, D. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci. Total Environ. 2006, 364, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Juwarkar, A.A.; Devotta, S. Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J. Hazard. Mater. 2008, 152, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonso-Azca´rate, J.; Rincoín, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Choi, K.K. Risk assessment of soil, water and crops in abandoned Geumryeong mine in South Korea. J. Geochem. Exporl. 2013, 128, 117–123. [Google Scholar] [CrossRef]
- KMoTIE. Annual Report of Environmental Status in Mining Areas; Ministry of Trade, Industry, and Energy of the Republic of Korea: Sejong City, Korea, 2010.
- Lee, S.H.; Ji, W.H.; Yang, H.J.; Kang, S.Y.; Kang, D.M. Reclamation of mine-degraded agricultural soils from metal mining: lessons from 4 years of monitoring activity in Korea. Environ. Earth. Sci. 2017, 76, 720. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.W.; Ahn, J.; Ko, I.; Lee, C.H. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environ. Geochem. Health 2005, 27, 193–203. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, B.T.; Kim, J.Y.; Kim, K.W.; Lee, J.S. Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environ. Monit. Assess. 2006, 119, 233–244. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Mahimairaja, S.; Bolan, N.S.; Adriano, D.C.; Robinson, B. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron. 2005, 86, 1–82. [Google Scholar]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borne, Y.; Engstrom, G.; et al. Blood lead levels and decreased kidney function in a population-based cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeng-Gyasi, E. Lead exposure and cardiovascular disease among young and middle ages adults. Med. Sci. 2019, 7, 103. [Google Scholar]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA 2017, 317, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- ISO. Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia. In ISO 11466; International Organization of Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- ISO. Soil Quality-Extraction of trace elements from soil using ammonium nitrate solution. In ISO 19730; International Organization of Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- KMoE. Soil Contamination Risk Assessment Guidelines; Ministry of Environment Republic of Korea: Sejong City, Korea, 2009.
- USEPA. Volume I, Human Health Evaluation Manual (Part A). In Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response: Washinghton, DC, USA, 1989. [Google Scholar]
- US DoE. RAIS: Risk Assessment Information System; US Department of Energy, Office of Environmental Management: Washington, DC, USA, 2000.
- KOSIS. KOSIS 100 Indices; Korean Statistical Information Service: Seoul, Korea, 2013. [Google Scholar]
- USEPA. Volume I, Human Health Evaluation Manual (Part F). In Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response: Washinghton, DC, USA, 2009. [Google Scholar]
- Van Wijnen, J.H.; Clausing, P.; Brunekreef, B. Estimated soil ingestion by children. Environ. Res. 1990, 51, 147–162. [Google Scholar] [CrossRef]
- KMoE. Korean Exposure Factors Handbook; Ministry of Environment Republic of Korea: Sejong City, Korea, 2007.
- SFT. Report 99.06. In Guidelines on Risk Assessment of Contaminated Sites; Norwegian Pollution Control Authority: Oslo, Norway, 1999. [Google Scholar]
- KNIER. Investigation of Health Effect on Inhabitants around Abandoned Metal Mines; National Institute of Environmental Research: Incheon, Korea, 2011. [Google Scholar]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci. Total Environ. 2019, 463–464, 530–540. [Google Scholar] [CrossRef]
- KMoE. Annual Report of National Soil Contamination Monitoring; Ministry of Environment Republic of Korea: Sejong City, Korea, 2015.
- Zhuang, P.; Zou, B.; Li, N.Y.; Li, Z.A. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ. Geochem. Health 2009, 31, 707–715. [Google Scholar] [CrossRef]
- Kim, M.; Chang, M.I.; Chung, S.Y.; Sho, Y.S.; Hong, M.K. Trace metal contents in cereals, pulses and potatoes and their safety evaluations. J. Korean Soc. Food Sci. Nutr. 2000, 29, 364–368. [Google Scholar]
- KFDA. Notice 2006–62. In Food Standards and Specifications; Korea Food & Drug Administration: Seoul, Korea, 2013. [Google Scholar]
- Reeves, P.G.; Chaney, R.L. Mineral nutrients status of female rats affects the absorption and organ distribution of cadmium from sunflower kernels (Helianthus annuus L.). Environ. Res. 2001, 85, 215–225. [Google Scholar] [CrossRef]
- Kang, Y.; Cheung, K.C.; Wong, M.H. Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environ. Int. 2011, 37, 637–643. [Google Scholar] [CrossRef]
- Fernandez-Caliani, J.C. Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain. Environ. Geochem. Health 2012, 34, 123–139. [Google Scholar] [CrossRef]
- Park, J.; Choi, K. Risk assessment of the abandoned Jukjeon metal mine in south korea following the Korean guidelines. Human Ecol. Risk Assess. 2013, 19, 754–766. [Google Scholar] [CrossRef]
- Bell, L.C. Establishment of native ecosystems after mining-Australian experience across diverse biogeographic zones. Ecol. Eng. 2001, 17, 179–186. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, E.Y.; Park, H.; Yun, J.H.; Kim, J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 2011, 161, 1–7. [Google Scholar] [CrossRef]
- Kim, M.S.; Min, H.G.; Lee, S.H.; Kim, J.G. The effects of various amendments on trace element stabilization in acidic, neutral, and alkali soil with similar pollution index. PLoS ONE 2016, 11, e0166335. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lee, J.S.; Choi, Y.J.; Kim, J.G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009, 77, 1069–1075. [Google Scholar] [CrossRef]
Exposure Pathway | Equation for Average Daily Intake a |
---|---|
Surface soil oral ingestion (mg kg−1 day−1) | (C s × CR s × EF × ED)/(BW × AT) |
Surface soil dermal (mg kg−1 day−1) | (Cs × AF × SAe × EF × ED)/(BW × AT) |
Inhalation of surface soil (mg m−3) | (Cs × TSP × frs × Fr × EF × ED)/(BW × AT) |
Intake of groundwater (mg kg−1 day−1) | (Cw × CRw × EF × ED)/(BW × AT) |
Intake of crop (mg kg−1 day−1) | (Cp × CRp × EF × ED)/(BW × AT) |
Factors/Parameters | Unit | Acceptor | References | ||
---|---|---|---|---|---|
Adults | Children | ||||
Body weight (BW) | kg | 59.9 | 36 | KNIER, 2011 | |
Exposure duration (ED) | years | 48.4 | 8.2 | KNIER, 2011 | |
Average time (AT) | days | 28,656 | 29,908 | KOSIS, 2013 [20] | |
Exposure frequency (EF) | days year−1 | 350 | 350 | KMoE, 2009 | |
Surface area body for dermal contact of soil (SAe) | cm2 day−1 | 4212 | 2978 | KNIER, 2011 | |
Soil-skin adsorption coefficient (AF) | mg cm−2 | 0.07 | 0.2 | USEPA, 2009 [21] | |
Amount of air-suspended particles (TSP) | mg m−3 | 0.07 | 0.07 | KNIER, 2011 | |
Soil fraction in particles in the air (frs) | - | 0.5 | 0.5 | KNIER, 2011 | |
Retention of soil particles in lung (Fr) | - | 0.75 | 0.75 | KMoE, 2009 | |
Intake rate of soil (CRs) | mg day−1 | 50 | 118 | KMoE, 2007 | |
Intake rate of groundwater (CRw) | L day−1 | 1.66 | 1.00 | KMoE, 2007 | |
Intake rate of crop (CRc) | Rice | kg day−1 | 0.161 | 0.108 | KMoE, 2007 |
Red pepper | 0.005 | 0.004 | |||
Garlic | 0.001 | 0.001 |
Type | No. of Samples | Units | Trace Elements | |||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cu | Pb | Zn | ||||
Soil a | 37 | mg kg−1 | 31.77 | 3.31 | 19.87 | 93.88 | 288.47 | |
Water | 6 | mg L−1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.10 | |
Crops | Rice | 6 | mg kg−1 | 0.03 | 0.40 | 7.77 | 0.09 | 19.45 |
Red pepper | 7 | mg kg−1 | 0.04 | 0.08 | 1.23 | ND b | 8.95 | |
Garlic | 7 | mg kg−1 | 0.25 | 0.17 | 2.00 | ND | 8.56 |
Life Stage | Pathway | As | Cd | Cu | Pb | Zn |
---|---|---|---|---|---|---|
mg kg−1 day−1 | ||||||
Adults | Surface soil oral ingestion | 2.72 × 10−06 | 1.92 × 10−08 | 5.36 × 10−06 | 3.46 × 10−05 | 9.12 × 10−05 |
Surface soil contact | 5.06 × 10−07 | 6.35 × 10−07 | 5.54 × 10−06 | 1.22 × 10−06 | 1.08 × 10−05 | |
Surface soil inhalation | 9.00 × 10−08 | 2.42 × 10−08 | 2.96 × 10−07 | 1.09 × 10−06 | 2.87 × 10−06 | |
Groundwater oral ingestion | 1.09 × 10−04 | 7.79 × 10−05 | 1.56 × 10−03 | 1.71 × 10−04 | 1.60 × 10−03 | |
Crop oral ingestion | 5.43 × 10−05 | 1.53 × 10−05 | 6.73 × 10−03 | 1.36 × 10−04 | 3.01 × 10−02 | |
Total | 1.67 × 10−04 | 9.39 × 10−05 | 8.30 × 10−03 | 3.44 × 10−04 | 3.18 × 10−02 | |
Children | Surface soil oral ingestion | 1.73 × 10−06 | 1.23 × 10−08 | 3.42 × 10−06 | 2.21 × 10−05 | 5.82 × 10−05 |
Surface soil contact | 2.76 × 10−07 | 3.47 × 10−07 | 3.03 × 10−06 | 6.69 × 10−07 | 5.88 × 10−06 | |
Surface soil inhalation | 1.46 × 10−08 | 3.93 × 10−09 | 4.80 × 10−08 | 1.77 × 10−07 | 4.66 × 10−07 | |
Groundwater oral ingestion | 1.77 × 10−05 | 1.27 × 10−05 | 2.54 × 10−04 | 2.79 × 10−05 | 2.61 × 10−04 | |
Crop oral ingestion | 8.63 × 10−06 | 8.63 × 10−06 | 1.22 × 10−03 | 2.61 × 10−04 | 5.37 × 10−03 | |
Total | 2.84 × 10−05 | 2.17 × 10−05 | 1.48 × 10−03 | 3.12 × 10−04 | 5.70 × 10−03 |
Life Stage | Pathway | As | Cd | Cu | Pb | Zn | Total |
---|---|---|---|---|---|---|---|
Adults | Surface soil oral | 4.08 × 10−06 | - | - | 2.94 × 10−07 | - | 4.37 × 10−06 |
Surface soil dermal | 1.67 × 10−06 | - | - | - | - | 1.67 × 10−06 | |
Surface soil inhalation | 3.87 × 10−07 | 4.35 × 10−08 | - | 1.31 × 10−08 | - | 4.44 × 10−07 | |
Groundwater oral | 1.63 × 10−04 | - | - | 1.46 × 10−06 | - | 1.64 × 10−04 | |
Crop oral | 8.15 × 10−05 | - | - | 1.16 × 10−06 | - | 8.27 × 10−05 | |
Total | 2.51 × 10−04 | 4.35 × 10−08 | - | 2.93 × 10−06 | - | 2.54 × 10−04 | |
Children | Surface soil oral | 2.60 × 10−06 | - | - | 1.88 × 10−07 | - | 2.79 × 10−06 |
Surface soil dermal | 9.12 × 10−07 | - | - | - | 9.12 × 10−07 | ||
Surface soil inhalation | 6.28 × 10−08 | 7.07 × 10−09 | - | 2.12 × 10−09 | - | 7.20 × 10−08 | |
Groundwater oral | 2.66 × 10−05 | - | - | 2.37 × 10−07 | - | 2.68 × 10−05 | |
Crop oral | 1.29 × 10−05 | - | - | 2.09 × 10−07 | - | 1.31 × 10−05 | |
Total | 4.31 × 10−05 | 7.07 × 10−09 | - | 6.36 × 10−07 | - | 4.37 × 10−05 |
Classification | Slope Factor | As | Cd | Cu | Pb | Zn |
---|---|---|---|---|---|---|
Carcinogenic | Oral slope factor (SFo) (mgkg−1-day)−1 | 1.50 | ND a | ND | 8.50 × 10−03 | ND |
Dermal slope factor (SFabs) (mgkg−1-day)−1 | 3.30 | ND | ND | ND | ND | |
Inhalation unit risk (URFinh) (㎍m−3)−1 | 4.30 × 10−03 | 1.80 × 10−03 | ND | 1.20 × 10−05 | ND | |
Non-carcinogenic | Oral reference dose (Rfo) (mgkg−1-day) | 3.00 × 10−04 | 5.00 × 10−04 | 1.40 × 10−01 | 5.00 × 10−04 | 3.00 × 10−01 |
Dermal reference dose (RfDabs) (mgkg−1-day)−1 | 2.90 × 10−04 | 1.30 × 10−05 | ND | ND | ND | |
Inhalation reference dose (RfC) (mgm−3) | ND | 7.00 × 10−04 | 1.00 × 10−03 | ND | ND |
Life Stage | Pathway | As | Cd | Cu | Pb | Zn | Total |
---|---|---|---|---|---|---|---|
Adults | Surface soil oral | 9.06 × 10−03 | 3.85 × 10−05 | 3.83 × 10−05 | 6.92 × 10−02 | 3.04 × 10−04 | 7.86 × 10−02 |
Surface soil dermal | 1.75 × 10−03 | 4.88 × 10−02 | - | - | - | 5.06 × 10−02 | |
Surface soil inhalation | - | 3.46 × 10−05 | 2.96 × 10−04 | - | - | 3.31 × 10−04 | |
Groundwater oral | 3.63 × 10−01 | 1.56 × 10−01 | 1.11 × 10−02 | 3.43 × 10−01 | 5.35 × 10−03 | 8.78 × 10−01 | |
Crop oral | 1.81 × 10−01 | 3.06 × 10−02 | 4.81 × 10−02 | 2.72 × 10−01 | 1.00 × 10−01 | 6.32 × 10−01 | |
Children | Surface soil oral | 5.78 × 10−03 | 2.45 × 10−05 | 2.44 × 10−05 | 4.42 × 10−02 | 1.94 × 10−04 | 5.02 × 10−02 |
Surface soil dermal | 9.53 × 10−04 | 2.67 × 10−02 | - | - | - | 2.77 × 10−02 | |
Surface soil inhalation | - | 5.61 × 10−06 | 4.80 × 10−05 | - | - | 5.36 × 10−05 | |
Groundwater oral | 5.92 × 10−02 | 2.54 × 10−02 | 1.81 × 10−03 | 5.58 × 10−02 | 8.71 × 10−04 | 1.43 × 10−01 | |
Crop oral | 2.88 × 10−02 | 5.51 × 10−03 | 8.69 × 10−03 | 4.93 × 10−02 | - | 9.23 × 10−02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Park, M.J.; Yang, J.H.; Lee, S.-H. Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options. Int. J. Environ. Res. Public Health 2019, 16, 5077. https://doi.org/10.3390/ijerph16245077
Kim M-S, Park MJ, Yang JH, Lee S-H. Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options. International Journal of Environmental Research and Public Health. 2019; 16(24):5077. https://doi.org/10.3390/ijerph16245077
Chicago/Turabian StyleKim, Min-Suk, Mi Jeong Park, Jeong Hwa Yang, and Sang-Hwan Lee. 2019. "Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options" International Journal of Environmental Research and Public Health 16, no. 24: 5077. https://doi.org/10.3390/ijerph16245077
APA StyleKim, M. -S., Park, M. J., Yang, J. H., & Lee, S. -H. (2019). Human Health Risk Assessment for Toxic Trace Elements in the Yaro Mine and Reclamation Options. International Journal of Environmental Research and Public Health, 16(24), 5077. https://doi.org/10.3390/ijerph16245077