Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Land-Use Classification
2.3.2. Quantitative Analysis of Land-Use Change
- Land-use dynamic degree
- Land-use transition matrix
- Land-use intensity
2.3.3. Evaluation of the ESV
3. Results
3.1. Land-Use Change Characteristics
3.1.1. Change in Land-Use Structure
3.1.2. Dynamic Degree of Land-Use Change
3.1.3. Land-Use Transition
3.1.4. Land-Use Intensity
3.2. Evaluation of the ESV
3.2.1. Changes in Total ESV
3.2.2. Changes in the ESVs of Different Ecosystem Service Types
3.2.3. Effects of Land-Use Change on ESV
3.2.4. Spatiotemporal Characteristics of ESV
4. Discussion
4.1. Spatial Distribution Pattern of ESV
4.2. Effects of Land-Use Change on ESV
4.3. Policy Recommendations
4.4. Limitations
5. Conclusions
- Paddy field represented the largest proportion of land-use types in Anhui province, followed by unirrigated field and forest land. The acceleration of urbanization is the main driving force for the transformation of land-use types, and the main trend of land-use change is a significant increase in built-up land (3768.07 km2) and a significant decrease in farmland (−3751.16 km2). Farmland is the most important transfer source of built-up land.
- From 2000 to 2015, the total ESV of Anhui province decreased by 331.84 × 107 CNY. Among the 11 ecosystem service types, hydrological regulation made the largest ESV contribution, accounting for approximately 50% of the total ESV. Water supply was the only ecological service type that had a negative effect on ESV, which is closely related to the expansion of built-up land and a large proportion of paddy field. Among the 16 cities, Anqing had the largest proportion of water area, which led to the largest ESV in this city. However, the ESVs of cities with high urbanization rates, such as Hefei, Maanshan, and Wuhu, have been greatly affected.
- The acceleration of urbanization has promoted the expansion of built-up land, resulting in a decrease in the ESV of 765.10 × 107 CNY. The expansion of water areas led to an increase in ESV of 1175.37 × 107 CNY. Although the land-use change caused a significant change in ESV, the negative effect of built-up land on ESV covered this feature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daily, G.C.; Loomes, R.; Neill, K.O. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Yuan, K.; Li, F.; Yang, H.; Wang, Y. The Influence of Land Use Change on Ecosystem Service Value in Shangzhou District. Int. J. Environ. Res. Public Health 2019, 16, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannigrahi, S.; Chakraborti, S.; Kumar, P.; Keesstra, S. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Neill, R.V.O.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Economic evaluation of ecosystem goods and services under different landscape management scenarios. Land Use Policy 2014, 39, 54–64. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H. Modelling land use change and environmental impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef]
- Salata, S. Land use change analysis in the urban region of Milan. Manag. Environ. Qual. Int. J. 2017, 28, 879–901. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Singh, R.P.; Chen, W. Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018. Sustainability 2018, 10, 3580. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhong, M.; Zeng, G.; Chen, G.; Hua, S.; Li, X. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China. Sci. Total Environ. 2017, 579, 1675–1682. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- María, B.; Néstor, M. Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina. Agric. Ecosyst. Environ. 2012, 154, 34–43. [Google Scholar]
- Sandifer, P.A.; Sutton-grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Qin, T.; Yan, D.; Yang, M.; Yu, H.; Shi, W. The Impact on the Ecosystem Services Value of the Ecological Shelter Zone Reconstruction in the Upper Reaches Basin of the Yangtze River in China. Int. J. Environ. Res. Public Health 2018, 15, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Seely, B.; Wang, G.; Innes, J.; Zheng, D.; Chen, P.; Wang, T.; Li, Q. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province. Sci. Total Environ. 2016, 557–558, 80–90. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q. Changes of Ecosystem Service Value in a Coastal Zone of Zhejiang Province, China, during Rapid Urbanization. Int. J. Environ. Res. Public Health 2018, 15, 1301. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Gong, J.; Li, J. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef]
- Sawut, M.; Eziz, M.; Tiyip, T. The effects of land-use change on ecosystem service value of desert oasis: A case study in Ugan-Kuqa River Delta Oasis, China. Can. J. Soil Sci. 2013, 93, 99–108. [Google Scholar] [CrossRef]
- Ran, S.; Li, X.; Lv, C. Multi-scale Modeling of Land-cover Change and Ecosystem Service Values: A Case of the Yuzixi Catchment in Sichuan. Acta Geogr. Sin. 2006, 61, 1113–1120. [Google Scholar]
- Xie, G.; Xhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.; Li, W.; Yu, X.; Zhang, B.; Lu, C.; An, K.; Wang, J.; Xu, K.; Wang, J. Forest Ecosystem Services and Their Values in Beijing. Chin. Geogr. Sci. 2010, 20, 51–58. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Yu, C.; Luo, L.; Pan, Y. Land management in fl uences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J. Environ. Manag. 2017, 193, 70–78. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Hou, H.; Yang, Y.; Gong, Y. Assessing the Changes of Ecosystem Services in the Nansi Lake Wetland, China. Water 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef] [Green Version]
- Poudyal, N.C.; Elkins, D.; Nibbelink, N.; Cordell, H.K. An exploratory spatial analysis of projected hotspots of population growth, natural land loss, and climate change in the conterminous United States. Land Use Policy 2016, 51, 325–334. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.; Connor, D. Land-use change impacts on ecosystem services value: Incorporating the scarcity e ff ects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Kang, Y.; Cheng, C.; Liu, X.; Zhang, F.; Li, Z.; Lu, S. An ecosystem services value assessment of land-use change in Chengdu: Based on a modification of scarcity factor. Phys. Chem. Earth 2019, 110, 157–167. [Google Scholar] [CrossRef]
- Miao, C.L.; Sun, L.Y.; Yang, L. The studies of ecological environmental quality assessment in Anhui Province based on ecological footprint. Ecol. Indic. 2016, 60, 879–883. [Google Scholar] [CrossRef]
- Hu, S.; Li, L.; Chen, L.; Cheng, L.; Yuan, L. Estimation of Soil Erosion in the Chaohu Lake Basin through Modified Soil Erodibility Combined with Gravel Content in the RUSLE Model. Water 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Natural Resources of the People’s Republic of China. Current Land Use Classification (GBT 21010-2017); Standards Press of China: Beijing, China, 2017. [Google Scholar]
- Cui, Y.; Li, L.; Chen, L.; Zhang, Y.; Cheng, L.; Zhou, X.; Yang, X. Land-use carbon emissions estimation for the Yangtze River Delta Urban Agglomeration using 1994-2016 Landsat image data. Remote Sens. 2018, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 2017, 345, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, L.; Chen, L.; Liu, Y.; Cui, Y. Discriminating Urban Forest Types from Sentinel-2A Image Data through Linear Spectral Mixture Analysis: A Case Study of Xuzhou, East China. Forests 2019, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bao, Y. Study on the Methods of Land Use Dynamic Change Research. Prog. Geogr. 1999, 18, 81–87. [Google Scholar]
- Han, Z.; Song, W.; Deng, X. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Liiri, M.; Häsä, M.; Haimi, J.; Setälä, H. History of land-use intensity can modify the relationship between functional complexity of the soil fauna and soil ecosystem services–A microcosm study. Appl. Soil Ecol. 2012, 55, 53–61. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.; Wang, B.; Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth Sci. 2016, 75, 416. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the Model of Regional Differentiation of Land Use Degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar]
- Wang, F.; Zhang, Y.; Huang, J.; Tang, Z.; He, H.; Wang, Y. Spatio-Temporal Variations in Vegetation Water Use Efficiency and Their Influencing Factors in Anhui Province Based on MODIS Data. Resour. Environ. Yangtze Basin 2019, 28, 1314–1323. [Google Scholar]
- Bian, Z.; Lu, Q. Ecological effects analysis of land use change in coal mining area based on ecosystem service valuing: A case study in Jiawang. Environ. Earth Sci. 2013, 68, 1619–1630. [Google Scholar] [CrossRef]
- Hao, F.; Lai, X.; Ouyang, W. Effects of Land Use Changes on the Ecosystem Service Values of a Reclamation Farm in Northeast China. Environ. Manag. 2012, 50, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Valtanen, M.; Sillanpää, N.; Setälä, H. Effects of land use intensity on stormwater runoff and its temporal occurrence in cold climates. Hydrol. Process. 2014, 28, 2639–2650. [Google Scholar] [CrossRef]
- Sun, B.; Cui, L.; Li, W.; Kang, X.; Pan, X.; Lei, Y. A meta-analysis of coastal wetland ecosystem services in Liaoning. Estuar. Coast. Shelf Sci. 2018, 200, 349–358. [Google Scholar] [CrossRef]
- Wan, L.; Ye, X.; Lee, J.; Lu, X.; Zheng, L.; Wu, K. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Sanford, M.P.; Manley, P.N.; Murphy, D.D. Effects of Urban Development on Ant Communities: Implications for Ecosystem Services and Management. Conserv. Biol. 2008, 23, 131–141. [Google Scholar] [CrossRef]
- Mi, N.; Hou, J.; Mi, W.; Song, N. Optimal spatial land-use allocation for limited development ecological zones based on the geographic information system and a genetic ant colony algorithm. Int. J. Geogr. Inf. Sci. 2015, 29, 2174–2193. [Google Scholar] [CrossRef]
- Du, Y.; Sun, X. Economic Development and Environmental Quality—A Case Study of China Prefecture-Level Cities. Environ. Prog. Sustain. Energy 2017, 36, 1290–1295. [Google Scholar] [CrossRef]
- Fan, M.; Chen, L. Spatial characteristics of land uses and ecological compensations based on payment for ecosystem services model from 2000 to 2015 in Sichuan. Ecol. Inform. 2019, 50, 162–183. [Google Scholar] [CrossRef]
- Clerici, N.; Luisa, M.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Cao, S.; Li, C.; Cao, S.; Peng, Z.; Yang, L. Change in Ecosystem Service Value Arising from Land Consolidation Planning in Anhui Province. Asian Agric. Res. 2013, 5, 13–16. [Google Scholar]
- Mamat, A.; Halik, Ü.; Rouzi, A. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China. Sustainability 2018, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wu, C.; Hong, W.; Qiu, R.; Qi, X. Impact of land-use change on ecosystem service values and their effects under different intervention scenarios in Fuzhou City, China. Geosci. J. 2013, 17, 497–504. [Google Scholar] [CrossRef]
Year | Sensor | Acquisition Date (Path/Row) |
---|---|---|
2000 | TM | 2000-10-10 (120/37), 2000-10-10 (120/38), 2000-10-10 (120/39), 2000-10-10 (120/40), 2000-11-02 (121/36), 2000-11-02 (121/37), 2000-11-02 (121/38), 2000-11-02 (121/39), 2000-09-22 (122/36), 2000-09-22 (122/37), 2000-10-08 (122/38), 2000-10-08 (122/39), 2000-10-15 (123/36), 2000-10-15 (123/37) |
2005 | TM | 2005-10-24 (120/37), 2005-10-24 (120/38), 2005-10-24 (120/39), 2005-10-24 (120/40), 2005-10-31 (121/36), 2005-10-31 (121/37), 2005-10-31 (121/38), 2005-10-31 (121/39), 2005-11-07 (122/36), 2005-11-07 (122/37), 2005-11-07 (122/38), 2005-11-07 (122/39), 2005-10-29 (123/36), 2005-10-29 (123/37), |
2010 | ETM+ | 2010-10-30 (120/37), 2010-10-30 (120/38), 2010-10-30 (120/39), 2010-10-30 (120/40), 2010-10-05 (121/36), 2010-10-05 (121/37), 2010-10-05 (121/38), 2010-10-05 (121/39), 2010-10-28 (122/36), 2010-10-28 (122/37), 2010-10-28 (122/38), 2010-10-28 (122/39), 2010-11-04 (123/36), 2010-11-04 (123/37) |
2015 | OLI | 2015-10-20 (120/37), 2015-10-20 (120/38), 2015-10-20 (120/39), 2015-10-20 (120/40), 2015-10-11 (121/36), 2015-10-11 (121/37), 2015-10-11 (121/38), 2015-10-11 (121/39), 2015-10-02 (122/36), 2015-10-02 (122/37), 2015-10-02 (122/38), 2015-10-02 (122/39), 2015-10-09 (123/36), 2015-10-09 (123/37) |
Ecosystem Service | Type | Paddy Field | Unirrigated Field | Forest Land | Grass Land | Water Area | Wet Land | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|---|---|
Provisioning services | Food production (FP) | 1.36 | 0.85 | 0.29 | 0.38 | 0.80 | 0.51 | 0.01 | 0.00 |
Raw material production (RMP) | 0.09 | 0.40 | 0.66 | 0.56 | 0.23 | 0.50 | 0.00 | 0.00 | |
Water supply (WS) | −2.63 | 0.02 | 0.34 | 0.31 | 8.29 | 2.59 | −7.51 | 0.00 | |
Regulating services | Gas regulation (GR) | 1.11 | 0.67 | 2.17 | 1.97 | 0.77 | 1.90 | −2.42 | 0.02 |
Climate regulation (CR) | 0.57 | 0.36 | 6.50 | 5.21 | 2.29 | 3.60 | 0.00 | 0.00 | |
Hydrological regulation (HR) | 2.72 | 0.27 | 4.74 | 3.82 | 102.24 | 24.23 | 0.00 | 0.03 | |
Environmental purification (EP) | 0.17 | 0.10 | 1.93 | 1.72 | 5.55 | 3.60 | −2.46 | 0.10 | |
Supporting services | Soil formation and retention (SR) | 0.01 | 1.03 | 2.65 | 2.40 | 0.93 | 2.31 | 0.02 | 0.02 |
Maintain nutrient cycling (MNC) | 0.19 | 0.12 | 0.20 | 0.18 | 0.07 | 0.18 | 0.00 | 0.00 | |
Biodiversity protection (BP) | 0.21 | 0.13 | 2.41 | 2.18 | 2.55 | 7.87 | 0.34 | 0.02 | |
Cultural services | Recreation and culture (RC) | 0.09 | 0.06 | 1.06 | 0.96 | 1.89 | 4.73 | 0.01 | 0.01 |
Total | 3.89 | 4.01 | 22.95 | 19.69 | 125.61 | 52.02 | −12.01 | 0.20 |
Ecosystem Service | Type | Paddy Field | Unirrigated Field | Forest Land | Grass Land | Water Area | Wet Land | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|---|---|
Provisioning services | FP | 2139.89 | 1337.43 | 456.30 | 597.91 | 1,258.76 | 802.46 | 15.73 | 0.00 |
RMP | 141.61 | 629.38 | 1038.48 | 881.13 | 361.89 | 786.73 | 0.00 | 0.00 | |
WS | −4138.17 | 31.47 | 534.97 | 487.77 | 13,043.90 | 4075.24 | −11,816.61 | 0.00 | |
Regulating services | GR | 1746.53 | 1054.21 | 3414.39 | 3099.70 | 1211.56 | 2989.56 | −3807.75 | 31.47 |
CR | 896.87 | 566.44 | 10,227.43 | 8197.67 | 3603.20 | 5664.42 | 0.00 | 0.00 | |
HR | 4279.78 | 424.83 | 7458.15 | 6010.58 | 160,869.53 | 38,124.69 | 0.00 | 47.20 | |
EP | 267.49 | 157.35 | 3036.76 | 2706.33 | 8732.65 | 5664.42 | −3870.69 | 157.35 | |
Supporting services | SR | 15.73 | 1620.65 | 4169.64 | 3776.28 | 1463.31 | 3634.67 | 31.47 | 31.47 |
MNC | 298.96 | 188.81 | 314.69 | 283.22 | 110.14 | 283.22 | 0.00 | 0.00 | |
BP | 330.42 | 204.55 | 3792.01 | 3430.12 | 4012.30 | 12,383.05 | 534.97 | 31.47 | |
Cultural services | RC | 141.61 | 94.41 | 1667.86 | 1510.51 | 2973.82 | 7442.42 | 15.73 | 15.73 |
Total | 6120.72 | 6309.53 | 36,110.68 | 30,981.23 | 197,641.05 | 81,850.87 | 18,897.13 | 314.69 |
Land-Use Type | Single Land-Use Dynamic Degree | |||
---|---|---|---|---|
2000–2005 | 2005–2010 | 2010–2015 | 2000–2015 | |
Paddy field | −0.11 | −0.42 | −0.55 | −3.54 |
Unirrigated field | −0.07 | −0.26 | −0.45 | −2.57 |
Forest land | 0.00 | −0.05 | −0.11 | −0.51 |
Grass land | −0.01 | −0.07 | −0.14 | −0.75 |
Water area | 0.14 | 0.16 | 1.06 | 4.58 |
Wet land | −0.06 | 0.06 | −2.13 | −7.08 |
Built-up land | 0.55 | 2.47 | 2.94 | 21.63 |
Unused land | 0.10 | 1.59 | 95.97 | 352.75 |
Comprehensive land-use dynamic degree | 0.06 | 0.17 | 0.26 | 0.14 |
2000 | 2015 | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Unirrigated Field | Forest Land | Grass Land | Water Area | Wet Land | Built-Up Land | Unused Land | ||
Paddy field | 41,012.80 | 42.57 | 146.01 | 36.64 | 310.48 | 13.50 | 2286.79 | 12.71 | 43,861.49 |
Unirrigated field | 87.83 | 35,256.18 | 24.14 | 9.99 | 115.28 | 37.63 | 1376.80 | 2.67 | 36,910.52 |
Forest land | 152.43 | 20.72 | 31,786.97 | 56.25 | 20.82 | 1.91 | 241.30 | 6.11 | 32,286.51 |
Grass land | 22.61 | 4.31 | 71.33 | 8170.79 | 13.51 | 1.21 | 88.79 | 2.72 | 8375.27 |
Water area | 73.18 | 22.30 | 4.55 | 2.73 | 5914.88 | 28.47 | 45.31 | 0.33 | 6091.74 |
Wet land | 62.62 | 9.37 | 0.83 | 0.61 | 118.87 | 898.54 | 9.52 | 0.00 | 1100.36 |
Built-up land | 117.69 | 131.65 | 4.39 | 3.29 | 15.74 | 2.04 | 11,254.11 | 1.11 | 11,530.02 |
Unused land | 0.01 | 0.00 | 0.06 | 0.03 | 0.00 | 0.00 | 0.24 | 4.42 | 4.77 |
Total | 41,529.16 | 35,487.11 | 32,038.27 | 8280.32 | 6509.58 | 983.30 | 15,302.86 | 30.06 | 140,160.68 |
Year | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Intensity | 274.13 | 274.33 | 275.43 | 276.81 |
Land-Use Type | 2000 | 2005 | 2010 | 2015 | 2000–2005 (%) | 2005–2010 (%) | 2010–2015 (%) | 2000–2015 (%) |
---|---|---|---|---|---|---|---|---|
Paddy field | 2681.67 | 2667.09 | 2610.45 | 2539.09 | −0.54 | −2.12 | −2.73 | −5.32 |
Unirrigated field | 2326.24 | 2318.40 | 2287.89 | 2236.53 | −0.34 | −1.32 | −2.24 | −3.86 |
Forest land | 11,659.07 | 11,661.60 | 11,630.81 | 11,569.64 | 0.02 | −0.26 | −0.53 | −0.77 |
Grass land | 2595.66 | 2593.94 | 2584.75 | 2566.42 | −0.07 | −0.35 | −0.71 | −1.13 |
Water area | 12,046.89 | 12,131.94 | 12,226.04 | 12,873.71 | 0.71 | 0.78 | 5.30 | 6.86 |
Wet land | 900.98 | 898.20 | 901.04 | 805.25 | −0.31 | 0.32 | −10.63 | −10.63 |
Built-up land | −2194.94 | −2255.47 | −2534.19 | −2907.00 | 2.76 | 12.36 | 14.71 | 32.44 |
Unused land | 0.02 | 0.02 | 0.02 | 0.09 | 0.49 | 7.97 | 479.84 | 529.13 |
Total | 30,015.58 | 30,015.71 | 29,706.83 | 29,683.74 | 0.00 | −1.03 | −0.08 | −1.11 |
2000 | 2015 | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Unirrigated Field | Forest Land | Grass Land | Water Area | Wet Land | Built-Up Land | Unused Land | ||
Paddy field | —— | 2.69 | 52.72 | 11.35 | 613.64 | 11.05 | −432.14 | 0.04 | 259.35 |
Unirrigated field | 5.38 | —— | 8.72 | 3.09 | 227.84 | 30.80 | −260.18 | 0.01 | 15.66 |
Forest land | 9.33 | 1.31 | —— | 17.43 | 41.14 | 1.56 | −45.60 | 0.02 | 25.19 |
Grass land | 1.38 | 0.27 | 25.76 | —— | 26.70 | 0.99 | −16.78 | 0.01 | 38.34 |
Water area | 4.48 | 1.41 | 1.64 | 0.85 | —— | 23.30 | −8.56 | 0.00 | 23.12 |
Wet land | 3.83 | 0.59 | 0.30 | 0.19 | 234.93 | —— | −1.80 | 0.00 | 238.04 |
Built-up land | 7.20 | 8.31 | 1.58 | 1.02 | 31.11 | 1.67 | —— | 0.00 | 50.89 |
Unused land | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | −0.05 | —— | 0.00 |
Total | 31.61 | 14.57 | 90.75 | 33.93 | 1175.37 | 69.38 | −765.10 | 0.08 | 650.59 |
District | 2000 | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|---|
ESV | Proportion | ESV | Proportion | ESV | Proportion | ESV | Proportion | |
Anqing | 5648.79 | 18.87 | 5642.09 | 18.85 | 5598.65 | 18.90 | 5645.68 | 19.07 |
Bengbu | 952.71 | 3.18 | 951.67 | 3.18 | 943.53 | 3.19 | 923.09 | 3.12 |
Bozhou | 308.69 | 1.03 | 294.85 | 0.99 | 277.58 | 0.94 | 257.94 | 0.87 |
Chizhou | 2795.93 | 9.34 | 2800.23 | 9.36 | 2770.38 | 9.35 | 2752.98 | 9.30 |
Chuzhou | 2534.28 | 8.47 | 2554.99 | 8.54 | 2542.84 | 8.58 | 2609.48 | 8.81 |
Fuyang | 389.00 | 1.30 | 381.98 | 1.28 | 361.55 | 1.22 | 406.79 | 1.37 |
Hefei | 2618.41 | 8.75 | 2600.39 | 8.69 | 2538.17 | 8.57 | 2555.14 | 8.63 |
Huaibei | 179.03 | 0.60 | 173.54 | 0.58 | 164.60 | 0.56 | 145.53 | 0.49 |
Huainan | 385.06 | 1.29 | 387.63 | 1.30 | 389.06 | 1.31 | 388.05 | 1.31 |
Huangshan | 3165.26 | 10.57 | 3166.75 | 10.58 | 3150.60 | 10.64 | 3148.33 | 10.63 |
Lu’an | 4290.82 | 14.33 | 4271.34 | 14.27 | 4263.01 | 14.39 | 4318.79 | 14.59 |
Maanshan | 1016.03 | 3.39 | 1051.04 | 3.51 | 1060.58 | 3.58 | 991.49 | 3.35 |
Tongling | 370.59 | 1.24 | 372.64 | 1.25 | 353.08 | 1.19 | 336.92 | 1.14 |
Wuhu | 1316.92 | 4.40 | 1326.17 | 4.43 | 1292.88 | 4.36 | 1267.47 | 4.28 |
Suzhou | 472.28 | 1.58 | 467.10 | 1.56 | 461.01 | 1.56 | 431.42 | 1.46 |
Xuancheng | 3491.18 | 11.66 | 3487.90 | 11.65 | 3455.18 | 11.66 | 3424.83 | 11.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Chen, L.; Li, L.; Wang, B.; Yuan, L.; Cheng, L.; Yu, Z.; Zhang, T. Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. https://doi.org/10.3390/ijerph16245104
Hu S, Chen L, Li L, Wang B, Yuan L, Cheng L, Yu Z, Zhang T. Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. International Journal of Environmental Research and Public Health. 2019; 16(24):5104. https://doi.org/10.3390/ijerph16245104
Chicago/Turabian StyleHu, Sai, Longqian Chen, Long Li, Bingyi Wang, Lina Yuan, Liang Cheng, Ziqi Yu, and Ting Zhang. 2019. "Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China" International Journal of Environmental Research and Public Health 16, no. 24: 5104. https://doi.org/10.3390/ijerph16245104
APA StyleHu, S., Chen, L., Li, L., Wang, B., Yuan, L., Cheng, L., Yu, Z., & Zhang, T. (2019). Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. International Journal of Environmental Research and Public Health, 16(24), 5104. https://doi.org/10.3390/ijerph16245104