Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Personal-Scale, Real-Time Monitoring of Microenvironmental UFP Exposures
3.2. Data Visualization of Concurrent UFP and Noise Personal Exposure Levels
3.3. Heart Rate Measurements in Participants Exposed to UFP, Noise and Microenvironmental Temperature
4. Discussion
4.1. Interpretation of Measurements of Participants Exposed to UFP and Noise
4.2. Challenges in Measuring Health-Based Outcomes in Personal-Scale Exposure Studies
4.3. Advantages in Measuring Real-Time Noise Exposures Using Wearable Sensors
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munzel, T.; Gori, T.; Babisch, W.; Basner, M. Cardiovascular Effects of Environmental Noise Exposure. Eur. Heart J. 2014, 35, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Bandoli, G.; von Ehrenstein, O.; Ghosh, J.K.; Ritz, B. Synergistic Effects of Air Pollution and Psychosocial Stressors on Adolescent Lung Function. J. Allergy Clin. Immunol. 2016, 138, 918–920. [Google Scholar] [CrossRef] [PubMed]
- HEI Review Panel on Ultrafine Particles. Understanding the Health Effects of Ambient Ultrafine Particles; HEI Perspectives 3; Health Effects Institute: Boston, MA, USA, 2013; Available online: https://www.healtheffects.org/system/files/Perspectives3.pdf (accessed on 22 January 2019).
- Brugge, D.; Patton, A.P.; Bob, A.; Reisner, E.; Lowe, L.; Bright, O.-J.M.; Durant, J.L.; Newman, J.; Zamore, W. Developing Community-Level Policy and Practice to Reduce Traffic-Related Air Pollution Exposure. Environ. Justice 2015, 8, 95–104. [Google Scholar] [CrossRef]
- Heinzerling, A.; Hsu, J.; Yip, F. Respiratory Health Effects of Ultrafine Particles in Children: A Literature Review. Water Air Soil Pollut. 2015. [Google Scholar] [CrossRef]
- USEPA, Office of Transportation and Air Quality. Average In-Use Emissions from Heavy Duty Trucks, 420-F08-027; USEPA: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Babisch, W. Updated Exposure-Response Relationship between Road Traffic Noise and Coronary Heart Diseases: A Meta-Analysis. Noise Health 2014, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, E.; Babisch, W. The Quantitative Relationship between Road Traffic Noise and Hypertension: A Meta-Analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef]
- Stansfeld, S.; Berglund, B.; Clark, C.; Lopez-Barrio, I.; Fischer, P.; Ohrström, E.; Haines, M.; Head, J.; Hygge, S.; van Kamp, I.; et al. Aircraft and Road Traffic Noise and Children’s Cognition and Health: A Cross-National Study. Lancet 2005, 365, 1942–1949. [Google Scholar] [CrossRef]
- Tzivian, L.; Winkler, A.; Dlugaj, M.; Schikowski, T.; Vossoughi, M.; Fuks, K.; Weinmayr, G.; Hoffmann, B. Effect of Long-Term Outdoor Air Pollution and Noise on Cognitive and Psychological Functions in Adults. Int. J. Hyg. Environ. Health 2015, 218, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ristovska, G.; Laszlo, H.E.; Hansell, A.L. Reproductive Outcomes Associated with Noise Exposure—A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2014, 11, 7931–7952. [Google Scholar] [CrossRef]
- Dzhambov, A.M. Long-Term Noise Exposure and the Risk for Type 2 Diabetes: A Meta-Analysis. Noise Health 2015, 17, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Dekoninck, L.; Botteldooren, D.; Int Panis, L. An Instantaneous Spatiotemporal Model to Predict a Bicyclist’s Black Carbon Exposure Based on Mobile Noise Measurements. Atmos. Environ. 2013, 79, 623–631. [Google Scholar] [CrossRef]
- Dekoninck, L.; Botteldooren, D.; Panis, L.I.; Hankey, S.; Jain, G.; Karthik, S.; Marshall, J. Applicability of a Noise-Based Model to Estimate in-Traffic Exposure to Black Carbon and Particle Number Concentrations in Different Cultures. Environ. Int. 2014, 74, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, H.; Munson, W.A. Loudness, Its Definition, Measurement and Calculation. J. Acoust. Soc. Am. 1993, 5, 82. [Google Scholar] [CrossRef]
- USEPA. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety, EPA/ONAC 550/9-74-004. March 1974. Available online: https://nepis.epa.gov/EPA_levels_doc_1978.Pdf (accessed on 22 January 2019).
- Roberts, C. Low Frequency Noise from Transportation Sources. In Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, 23–27 August 2010; pp. 23–27. [Google Scholar]
- Can, A.; Rademaker, M.; Van Renterghem, T.; Mishra, V.; Van Poppel, M.; Touhafi, A.; Theunis, J.; De Baets, B.; Botteldooren, D. Correlation Analysis of Noise and Ultrafine Particle Counts in a Street Canyon. Sci. Total Environ. 2011, 409, 564–572. [Google Scholar] [CrossRef]
- Cattaneo, A.; Taronna, M.; Garramone, G.; Peruzzo, C.; Schlitt, C.; Consonni, D.; Cavallo, D.M. Comparison between Personal and Individual Exposure to Urban Air Pollutants. Aerosol Sci. Technol. 2010, 44, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; Son, S.Y.; Wolfe, C.; Lockey, J.; Brokamp, C.; LeMasters, G. A Field Application of a Personal Sensor for Ultrafine Particle Exposure in Children. Sci Total Environ. 2015, 508, 366–373. [Google Scholar] [CrossRef]
- Chung, M.; Wang, D.D.; Rizzo, A.M.; Gachette, D.; Delnord, M.; Parambi, R.; Kang, C.-M.; Brugge, D. Association of PNC, BC, and PM2.5 Measured at a Central Monitoring Site with Blood Pressure in a Predominantly Near Highway Population. Int. J. Environ. Res. Public Health 2015, 12, 2765–2780. [Google Scholar] [CrossRef]
- Dekoninck, L.; Botteldooren, D.; De Coensel, B.; Int Panis, L. Spectral Noise Measurements Supply Instantaneous Traffic Information for Multidisciplinary Mobility and Traffic Related Projects. In Proceedings of the 45th International Congress and Exposition on Noise Control Engineering (Inter-Noise 2016), Hamburg, Germany, 21–24 August 2016; pp. 5740–5746. [Google Scholar]
- Leaffer, D.J.; Mailk, R.; Tracey, B.; Gute, D.M.; Hastings, A.L.; Roof, C.J.; Noel, G.J. Correlating Transportation Noise Frequencies with Ultrafine Particulate Emissions by Source: Implications for Environmental Health Studies. Proc. Mtgs. Acoust. 2017, 30, 040004. [Google Scholar] [CrossRef]
- Buonanno, G.; Marks, G.B.; Morawska, L. Health Effects of Daily Airborne Particle Dose in Children: Direct Association between Personal Dose and Respiratory Health Effects. Environ. Pollut. 2013, 180, 246–250. [Google Scholar] [CrossRef]
- Segura-Garcia, J.; Felici-Castell, S.; Perez-Solano, J.J.; Cobos, M.; Navarro, J.M. Low-Cost Alternatives for Urban Noise Nuisance Monitoring Using Wireless Sensor Networks. IEEE Sens. J. 2015, 15, 836–844. [Google Scholar] [CrossRef]
- Kardous, C.A.; Shaw, P.B. Evaluation of Smartphone Sound Measurement Applications (Apps) Using External Microphones—A Follow-up Study. J. Acoust. Soc. Am. 2016, 140, EL327. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.P.; Tingay, J. Comparative Study of the Performance of Smartphone-Based Sound Level Meter Apps, with and without the Application of a ½” IEC-61094-4 Working Standard Microphone, to IEC-61672 Standard Metering Equipment in the Detection of Various Problematic Workplace Noise Environments. In Proceedings of the Inter Noise Conference 2014, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Larson, S.; Comina, G.; Gilman, R.H.; Tracey, B.H.; Bravard, M.; López, J.W. Validation of an Automated Cough Detection Algorithm for Tracking Recovery of Pulmonary Tuberculosis Patients. PLoS ONE 2012, 7, e46229. [Google Scholar] [CrossRef] [PubMed]
Feb 28, 2018 (1) | PNC (#/cc) | Noise (dBA) |
---|---|---|
minimum | 1 | 41 |
maximum | 103000 | 98 |
mean | 11765 | 59.3 |
median | 5620 | 56 |
standard dev. | 17342 | 11.8 |
cv (2) | 1.47 | 0.20 |
skewness | 2.92 | 1.04 |
kurtosis | 11.5 | 3.11 |
21 June 2018 (1) | PNC (#/cc) | Noise (dBA) | Temp. (oF) (3) | Heart Rate (4) |
---|---|---|---|---|
minimum | 1310 | 42 | 76.6 | 48 |
maximum | 51700 | 93 | 81.2 | 93 |
mean | 14444 | 55.7 | 79.3 | 61.7 |
median | 8710 | 55 | 79.3 | 59 |
standard dev. | 13572 | 5.9 | 1.4 | 9.3 |
cv | 0.94 | 0.11 | 0.02 | 0.15 |
22 June 2018 (2) | PNC (#/cc) | Noise (dBA) | Temp. (oF) (3) | Heart Rate (4) |
minimum | 354 | 42 | 78.8 | 70 |
maximum | 13500 | 91 | 80.3 | 155 |
mean | 3001 | 54.6 | 79.7 | 112 |
median | 1200 | 54 | 79.7 | 109 |
standard dev. | 3563 | 5.1 | 0.28 | 15.7 |
cv | 1.2 | 0.09 | 0.004 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leaffer, D.; Wolfe, C.; Doroff, S.; Gute, D.; Wang, G.; Ryan, P. Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population. Int. J. Environ. Res. Public Health 2019, 16, 308. https://doi.org/10.3390/ijerph16030308
Leaffer D, Wolfe C, Doroff S, Gute D, Wang G, Ryan P. Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population. International Journal of Environmental Research and Public Health. 2019; 16(3):308. https://doi.org/10.3390/ijerph16030308
Chicago/Turabian StyleLeaffer, Douglas, Christopher Wolfe, Steve Doroff, David Gute, Grace Wang, and Patrick Ryan. 2019. "Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population" International Journal of Environmental Research and Public Health 16, no. 3: 308. https://doi.org/10.3390/ijerph16030308
APA StyleLeaffer, D., Wolfe, C., Doroff, S., Gute, D., Wang, G., & Ryan, P. (2019). Wearable Ultrafine Particle and Noise Monitoring Sensors Jointly Measure Personal Co-Exposures in a Pediatric Population. International Journal of Environmental Research and Public Health, 16(3), 308. https://doi.org/10.3390/ijerph16030308