The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ethics Committee Approval
2.3. Selection of Subjects
2.4. Questionnaire
2.5. Height
2.6. Impedance
2.7. BMI
2.8. Urine
2.8.1. Urinary 15-F2t IsoP
2.8.2. Urinary Cotinine
2.8.3. Urinary Creatinine
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bono, R.; Tassinari, R.; Bellisario, V.; Gilli, G.; Pazzi, M.; Pirro, V.; Mengozzi, G.; Bugiani, M.; Piccioni, P. Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth. Environ. Res. 2015, 137, 141–146. [Google Scholar] [CrossRef]
- Kostikas, K.; Minas, M.; Nikolaou, E.; Papaioannou, A.I.; Liakos, P.; Gougoura, S.; Gourgoulianis, K.I.; Dinas, P.C.; Metsios, G.S.; Jamurtas, A.Z.; et al. Secondhand smoke exposure induces acutely airway acidification and oxidative stress. Respir. Med. 2013, 107, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çolak, Y.; Afzal, S.; Lange, P.; Nordestgaard, B.G. Smoking, Systemic Inflammation, and Airflow Limitation: A Mendelian Randomization Analysis of 9808-5 Individuals From the General Population. Nicotine Tob. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Van’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Özer, Ö.F.; Erek Toprak, A.; Erman, H.; Torun, E.; Kesgin Ayhan, S.; Caglar, H.G.; Selek, S.; Kocyigit, A. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med. Sci. Monit. 2016, 22, 3673–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechuga-Sancho, A.M.; Gallego-Andujar, D.; Ruiz-Ocaña, P.; Visiedo, F.M.; Saez-Benito, A.; Schwarz, M.; Segundo, C.; Mateos, R.M. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. PLoS ONE 2018, 13, e0191547. [Google Scholar] [CrossRef] [PubMed]
- Bono, R.; Bellisario, V.; Romanazzi, V.; Pirro, V.; Piccioni, P.; Pazzi, M.; Bugiani, M.; Vincenti, M. Oxidative stress in adolescent passive smokers living in urban and rural environments. Int. J. Hyg. Environ. Health 2014, 217, 287–293. [Google Scholar] [CrossRef]
- Theodorou, A.A.; Paschalis, V.; Kyparos, A.; Panayiotou, G.; Nikolaidis, M.G. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: Does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus? Biochem. Biophys. Res. Commun. 2014, 454, 131–136. [Google Scholar] [CrossRef]
- Kahraman, F.U.; Torun, E.; Osmanoğlu, N.K.; Oruçlu, S.; Özer, Ö.F. Serum oxidative stress parameters and paraoxonase-1 in children and adolescents exposed to passive smoking. Pediatr. Int. 2017, 59, 68–73. [Google Scholar] [CrossRef]
- Vijayakanthi, N.; Greally, J.M.; Rastogi, D. Pediatric Obesity-Related Asthma: The Role of Metabolic Dysregulation. Pediatrics 2016, 137. [Google Scholar] [CrossRef] [Green Version]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, J.D. Type 2 diabetes as a redox disease. Lancet 2014, 383, 841–843. [Google Scholar] [CrossRef]
- Zhang, Z.-J. Systematic review on the association between F2-isoprostanes and cardiovascular disease. Ann. Clin. Biochem. 2012, 50, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Greabu, M.; Totan, A.; Battino, M.; Mohora, M.; Didilescu, A.; Totan, C.; Spinu, T. Cigarette smoke effect on total salivary antioxidant capacity, salivary glutathione peroxidase and gamma-glutamyltransferase activity. BioFactors 2008, 33, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Remesh Kumar, R.; Jayakumar, P.R.; Krishna Mohan, R. Children Deserve Smoke Free World. Indian J. Pediatr. 2018, 85, 295–299. [Google Scholar] [CrossRef]
- Azuonwu, O.; Nweze, O.J.; Agom, D.A. Associated Public Health and Disease Consequences of Infants/Children’s Exposure to Second Hand Smoking: A Systematic Review. J. Lung Pulm. Respir. Res. 2017, 4, 00140. [Google Scholar]
- Breysse, P.N.; Diette, G.B.; Matsui, E.C.; Butz, A.M.; Hansel, N.N.; McCormack, M.C. Indoor Air Pollution and Asthma in Children. Proc. Am. Thorac. Soc. 2010, 7, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Dick, S.; Doust, E.; Cowie, H.; Ayres, J.G.; Turner, S. Associations between environmental exposures and asthma control and exacerbations in young children: A systematic review. BMC Open 2014, 4, e003827. [Google Scholar] [CrossRef]
- Flouris, A.D.; Vardavas, C.I.; Metsios, G.S.; Tsatsakis, A.M.; Koutedakis, Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 298, 3–12. [Google Scholar] [CrossRef]
- Vecchio, M.G.; Nikolakis, A.; Galasso, F.; Baldas, S.; Gregori, D. Even a very intense exposure to TV advertising promoting fruit consumption is not enough to make children eat more fruit: results from an experimental study in Italy. Med. J. Nutrition Metab. 2018. [Google Scholar] [CrossRef]
- Bahreynian, M.; Qorbani, M.; Motlagh, M.E.; Riahi, R.; Kelishadi, R. Association of dietary fiber intake with general and abdominal obesity in children and adolescents: The Weight disorder survey of the CASPIAN-IV Study. Med. J. Nutrition Metab. 2018, 11, 251–260. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Report of the Commission on Ending Childhood Obesity; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.C.; Lima, F.B. Adipose tissue as an endocrine organ: from theory to practice. J. Pediatr. (Rio. J). 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Khan, N.I.; Naz, L.; Yasmeen, G. Obesity: An independent risk factor for systemic oxidative stress. Pak. J. Pharm. Sci. 2006, 19, 62–65. [Google Scholar] [PubMed]
- Sengenès, C.; Miranville, A.; Lolmède, K.; Curat, C.A.; Bouloumié, A. The role of endothelial cells in inflamed adipose tissue. J. Intern. Med. 2007, 262, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzheshevsky, A.V. Fatal “Triad”: Lipotoxicity, oxidative stress, and phenoptosis. Biochem. 2013, 78, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative Stress in Obesity: A Critical Component in Human Diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Ranzi, A.; Freni Sterrantino, A.; Forastiere, F.; Sartini, C.; Casale, G.; Cavallini, R.; De Togni, A.; Gallo, L.; Lauriola, P. Asthmatic symptoms and air pollution: a panel study on children living in the Italian Po Valley. Geospat. Health 2015, 10, 366. [Google Scholar] [CrossRef]
- Renzoni, E. Asthma and respiratory symptoms in 6–7 yr old Italian children: gender, latitude, urbanization and socioeconomic factors SIDRIA (Italian Studies on Respiratory Disorders in Childhood and the Environment). Eur. Respir. J. 1997, 10, 1780–1786. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 2002, 11, 1–190. [Google Scholar]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Heal. Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Bellisario, V.; Mengozzi, G.; Grignani, E.; Bugiani, M.; Sapino, A.; Bussolati, G.; Bono, R. Towards a formalin-free hospital. Levels of 15-F2t-isoprostane and malondialdehyde to monitor exposure to formaldehyde in nurses from operating theatres. Toxicol. Res. 2016, 5, 1122–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanazzi, V.; Pirro, V.; Bellisario, V.; Mengozzi, G.; Peluso, M.; Pazzi, M.; Bugiani, M.; Verlato, G.; Bono, R. 15-F2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci. Total Environ. 2013, 442, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bono, R.; Munnia, A.; Romanazzi, V.; Bellisario, V.; Cellai, F.; Peluso, M.E.M. Formaldehyde-induced toxicity in the nasal epithelia of workers of a plastic laminate plant. Toxicol. Res. 2016, 5, 752–760. [Google Scholar] [CrossRef] [Green Version]
- Hensley, K.; Robinson, K.A.; Gabbita, S.P.; Salsman, S.; Floyd, R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000, 28, 1456–1462. [Google Scholar] [CrossRef]
- Shields, M.; Tremblay, M.S. Canadian childhood obesity estimates based on WHO, IOTF and CDC cut-points. Int. J. Pediatr. Obes. 2010, 5, 265–273. [Google Scholar] [CrossRef]
- Kêkê, L.M.; Samouda, H.; Jacobs, J.; di Pompeo, C.; Lemdani, M.; Hubert, H.; Zitouni, D.; Guinhouya, B.C. Body mass index and childhood obesity classification systems: A comparison of the French, International Obesity Task Force (IOTF) and World Health Organization (WHO) references. Rev. Epidemiol. Sante Publique 2015, 63, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Valerio, G.; Balsamo, A.; Baroni, M.G.; Brufani, C.; Forziato, C.; Grugni, G.; Licenziati, M.R.; Maffeis, C.; Miraglia Del Giudice, E.; Morandi, A.; et al. Childhood obesity classification systems and cardiometabolic risk factors: a comparison of the Italian, World Health Organization and International Obesity Task Force references. Ital. J. Pediatr. 2017, 43, 19. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Casanova, I.; Sarmiento, O.L.; Gazmararian, J.A.; Cunningham, S.A.; Martorell, R.; Pratt, M.; Stein, A.D. Comparing three body mass index classification systems to assess overweight and obesity in children and adolescents. Rev. Panam. Salud Publica 2013, 33, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderwall, C.; Eickhoff, J.; Randall Clark, R.; Carrel, A.L. BMI z-score in obese children is a poor predictor of adiposity changes over time. BMC Pediatr. 2018, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- Lønnebotn, M.; Svanes, C.; Igland, J.; Franklin, K.A.; Accordini, S.; Benediktsdóttir, B.; Bentouhami, H.; Blanco, J.A.G.; Bono, R.; Corsico, A.; et al. Body silhouettes as a tool to reflect obesity in the past. PLoS ONE 2018, 13, e0195697. [Google Scholar] [CrossRef] [PubMed]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
Females n = 161 (48.8%) | Males n = 169 (51.2%) | p-Value | Total 330 | ||
---|---|---|---|---|---|
Age (years) | 8 | 51 (31.7) | 56 (33.1) | 0.84 | 107 (32.4) |
9 | 58 (36.0) | 53 (31.4) | 111 (33.6) | ||
10+ | 52 (32.3) | 60 (35.5) | 112 (33.9) | ||
Ethnicity (n) | Non-Caucasian mothers a | 15 (9.3) | 17 (10.6) | 0.32 | 32 (9.7) |
Non-Caucasian fathers a | 17 (10.1) | 17 (10.1) | 0.54 | 34 (10.3) | |
Height (cm) | 138.4 ± 9.3 | 138.9 ± 8.4 | 0.57 | 138.4 ± 8.7 | |
Weight (kg) | 36.5 ± 10.1 | 36.8 ± 10.8 | 0.78 | 36.3 ± 10.2 | |
BMI (kg/m2) | 19.1 ± 3.6 | 18.8 ± 3.6 | 0.28 | 18.8 ± 0.2 | |
FMI (kg/m2) | 5.2 ± 2.2 | 4.8 ± 2.3 | 0.07 | 5.0 ± 2.3 | |
FFMI (kg/m2) | 13.9 ± 1.9 | 14.0 ± 1.6 | 0.44 | 14.0 ± 1.8 | |
Body Fat (%) | 26.9 ± 6.2 | 24.3 ± 6.6 | <0.0001 | 25.4 ± 6.5 |
15-F2t IsoP | Exp (β) (95% C.I.) | p-Value |
---|---|---|
Body composition a: | ||
Overweight (IOTF) | 1.22 (0.97–1.56) | 0.095 |
Obese (IOTF) | 1.56 (1.07–2.27) | 0.020 |
Cotinine quartiles b: | ||
COT 2nd quartile | 1.27 (0.93–1.72) | 0.130 |
COT 3rd quartile | 1.45 (1.06–1.97) | 0.020 |
COT 4th quartile | 2.04 (1.55–2.69) | <0.0001 |
Physical activity c: | ||
Moderate | 1.00 (0.83–1.23) | 0.944 |
Intense | 1.14 (0.81–(1.61) | 0.440 |
General characteristics d: | ||
Sex | 1.09 (0.92–1.31) | 0.297 |
Age | 1.06 (0.96–1.15) | 0.210 |
Body fat (%) | 1.00 (0.97–1.01) | 0.110 |
Normal Weight n = 45 | Obese n = 45 | p-Value | Gradients ∆ | |
---|---|---|---|---|
AGE (years) | 9.2 ± 0.9 | 9.2 ± 1.0 | 0.81 | |
FMI (Kg/m2) | 3.6 ± 0.9 | 8.8 ± 2.3 | <0.0001 | 5.2 ± 2.5 |
FFMI (Kg/m2) | 12.8 ± 0.9 | 16.3 ± 1.6 | <0.0001 | 3.5 ± 1.9 |
15-F2t IsoP (ng/mg Crea) | 3.8 ± 3.7 | 5.7 ± 4.7 | 0.039 | 4.1 ± 4.8 |
Ln(15-F2t IsoP) (ng/mg Crea) | 0.99 ± 0.79 | 1.50 ± 0.67 | 0.002 | 0.8 ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squillacioti, G.; Bellisario, V.; Grignani, E.; Mengozzi, G.; Bardaglio, G.; Dalmasso, P.; Bono, R. The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. Int. J. Environ. Res. Public Health 2019, 16, 490. https://doi.org/10.3390/ijerph16030490
Squillacioti G, Bellisario V, Grignani E, Mengozzi G, Bardaglio G, Dalmasso P, Bono R. The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. International Journal of Environmental Research and Public Health. 2019; 16(3):490. https://doi.org/10.3390/ijerph16030490
Chicago/Turabian StyleSquillacioti, Giulia, Valeria Bellisario, Elena Grignani, Giulio Mengozzi, Giulia Bardaglio, Paola Dalmasso, and Roberto Bono. 2019. "The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure" International Journal of Environmental Research and Public Health 16, no. 3: 490. https://doi.org/10.3390/ijerph16030490
APA StyleSquillacioti, G., Bellisario, V., Grignani, E., Mengozzi, G., Bardaglio, G., Dalmasso, P., & Bono, R. (2019). The Asti Study: The Induction of Oxidative Stress in A Population of Children According to Their Body Composition and Passive Tobacco Smoking Exposure. International Journal of Environmental Research and Public Health, 16(3), 490. https://doi.org/10.3390/ijerph16030490