Enteric Pathogen Diversity in Infant Foods in Low-Income Neighborhoods of Kisumu, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting/Ethical Consideration
2.2. Study Design
2.3. Data and Sample Collection
2.4. Nucleic Acid Extraction
2.5. Inhibition Screening/Preamplification
2.6. TaqMan Array Card Analysis
2.7. Data Analysis
3. Results
3.1. Demographics of Caregivers/Infants and Household Hygiene Conditions
3.2. Pathogen Distribution and Diversity in Infant Weaning Foods
3.3. Risk Factors for Enteric Pathogen Presence in Infant Weaning Food
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nhampossa, T.; Mandomando, I.; Acacio, S.; Quinto, L.; Vubil, D.; Ruiz, J.; Nhalungo, D.; Sacoor, C.; Nhabanga, A.; Nhacolo, A.; et al. Diarrheal Disease in Rural Mozambique: Burden, Risk Factors and Etiology of Diarrheal Disease among Children Aged 0–59 Months Seeking Care at Health Facilities. PLoS ONE 2015, 10, e0119824. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Dopfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar]
- Ahs, J.W.; Tao, W.; Löfgren, J.; Forsberg, B.C. Diarrheal diseases in low-and middle-income countries: Incidence, prevention and management. Open Infect. Dis. J. 2010, 4, 113–124. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Babji, S.; Bodhidatta, L.; Gratz, J.; Haque, R. Pathogen-specific burdens of community diarrhoea in developing countries: A multisite birth cohort study (MAL-ED). Lancet Glob. Health 2015, 3, e564–e575. [Google Scholar] [CrossRef]
- Guerrant, R.L.; Oriá, R.B.; Moore, S.R.; Oriá, M.O.; Lima, A.A. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev. 2008, 66, 487–505. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J.; the Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Motarjemi, Y.; Kaferstein, F.; Moy, G.; Quevedo, F. Contaminated weaning food: A major risk factor for diarrhoea and associated malnutrition. Bull. World Health Organ. 1993, 71, 79–92. [Google Scholar]
- Kirk, M.D.; Angulo, F.J.; Havelaar, A.H.; Black, R.E. Diarrhoeal disease in children due to contaminated food. Bull. World Health Organ. 2017, 95, 233. [Google Scholar] [CrossRef]
- Mediratta, R.P.; Feleke, A.; Moulton, L.H.; Yifru, S.; Sack, R.B. Risk factors and case management of acute diarrhoea in North Gondar Zone, Ethiopia. J. Health Popul. Nutr. 2010, 28, 253–263. [Google Scholar]
- Marino, D.D. Water and food safety in the developing world: Global implications for health and nutrition of infants and young children. J. Am. Diet Assoc. 2007, 107, 1930–1934. [Google Scholar] [CrossRef]
- Bazzano, A.N.; Kaji, A.; Felker-Kantor, E.; Bazzano, L.A.; Potts, K.S. Qualitative Studies of Infant and Young Child Feeding in Lower-Income Countries: A Systematic Review and Synthesis of Dietary Patterns. Nutrients 2017, 9, 1140. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, A.J.; Yount, K.M.; Null, C.; Ramakrishnan, U.; Webb Girard, A. Dairy intensification, mothers and children: An exploration of infant and young child feeding practices among rural dairy farmers in K enya. Matern. Child Nutr. 2015, 11, 88–103. [Google Scholar] [CrossRef]
- Mayuri, M.; Garg, V.; Mukherji, C.; Aggarwal, D.; Ganguly, S. Bovine milk usage and feeding practices for infants in India. Indian J. Public Health 2012, 56, 75. [Google Scholar] [PubMed]
- Turin, C.G.; Ochoa, T.J. The role of maternal breast milk in preventing infantile diarrhea in the developing world. Curr. Trop. Med. Rep. 2014, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Headey, D.; Nguyen, P.; Kim, S.; Rawat, R.; Ruel, M.; Menon, P. Is Exposure to Animal Feces Harmful to Child Nutrition and Health Outcomes? A Multicountry Observational Analysis. Am. J. Trop. Med. Hyg. 2017, 96, 961–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvesh, N.; Das, J.K.; Vaivada, T.; Gaffey, M.F.; Rasanathan, K.; Bhutta, Z.A. Water, sanitation and hygiene interventions for acute childhood diarrhea: A systematic review to provide estimates for the Lives Saved Tool. BMC Public Health 2017, 17, 776. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Devleesschauwer, B.; Aspinall, W.; Cooke, R.; Corrigan, T.; Havelaar, A.; Angulo, F.; Gibb, H.; Kirk, M.; Lake, R. Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation. PLoS ONE 2017, 12, e0183641. [Google Scholar] [CrossRef] [PubMed]
- Grace, D. Food safety in low and middle income countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.M.; Kwong, L.; Rahman, M.J.; Ercumen, A.; Pickering, A.J.; Ghosh, P.K.; Rahman, M.Z.; Das, K.K.; Luby, S.P.; Unicomb, L. Escherichia coli contamination of child complementary foods and association with domestic hygiene in rural Bangladesh. Trop. Med. Int. Health 2017, 22, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Agustina, R.; Sari, T.P.; Satroamidjojo, S.; Bovee-Oudenhoven, I.M.; Feskens, E.J.; Kok, F.J. Association of food-hygiene practices and diarrhea prevalence among Indonesian young children from low socioeconomic urban areas. BMC Public Health 2013, 13, 977. [Google Scholar] [CrossRef]
- Ishii, S.; Kitamura, G.; Segawa, T.; Kobayashi, A.; Miura, T.; Sano, D.; Okabe, S. Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples. Appl. Envrion. Microbiol. 2014, 80, 7505–7511. [Google Scholar] [CrossRef] [PubMed]
- Arikpo, D.; Edet, E.S.; Chibuzor, M.T.; Odey, F.; Caldwell, D.M. Educational interventions for improving primary caregiver complementary feeding practices for children aged 24 months and under. Cochrane Database Syst. Rev. 2018, 5, CD011768. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Hosmer, D. Exact methods for logistic regression models. In Applied Logistic Regression; Hosmer, D.W., Lemeshow, S., Eds.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.I.; Lanata, C.F.; Hartinger, S.M.; Mäusezahl, D.; Padilla, B.; Ochoa, T.J.; Lozada, M.; Pineda, I.; Verastegui, H. Fecal contamination of food, water, hands, and kitchen utensils at the household level in rural areas of Peru. J. Environ. Health 2014, 76, 102–107. [Google Scholar] [PubMed]
- Gibson, S.; Sahanggamu, D.; Fatmaningrum, D.; Curtis, V.; White, S. ‘Unfit for human consumption’: A study of the contamination of formula milk fed to young children in East Java, Indonesia. Trop. Med. Int. Health 2017, 22, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Ahmed, T.; Faruque, A.; Rahman, S.; Das, S.; Ahmed, D.; Fattori, V.; Clarke, R.; Endtz, H.; Cravioto, A. Microbiological quality of complementary foods and its association with diarrhoeal morbidity and nutritional status of Bangladeshi children. Eur. J. Clin. Nutr. 2012, 66, 1242. [Google Scholar] [CrossRef]
- Potgieter, N.; Obi, C.L.; Bessong, P.O.; Igumbor, E.O.; Samie, A.; Nengobela, R. Bacterial contamination of Vhuswa—A local weaning food and stored drinking-water in impoverished households in the Venda region of South Africa. J. Healthpopulation Nutr. 2005, 23, 150–155. [Google Scholar]
- Ghuliani, A.; Kaul, M. Contamination of weaning foods and transmission of E. coli in causation of infantile diarrhea in low income group in Chandigarh. Indian Pediatrics 1995, 32, 539–542. [Google Scholar]
- Pires, S.M.; Fischer-Walker, C.L.; Lanata, C.F.; Devleesschauwer, B.; Hall, A.J.; Kirk, M.D.; Duarte, A.S.; Black, R.E.; Angulo, F.J. Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS ONE 2015, 10, e0142927. [Google Scholar] [CrossRef]
- Stratev, D.; Odeyemi, O.A. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review. J. Infect. Public Health 2016, 9, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njarui, D.M.; Gatheru, M.; Wambua, J.M.; Nguluu, S.N.; Mwangi, D.M.; Keya, G.A. Consumption patterns and preference of milk and milk products among rural and urban consumers in semi-arid Kenya. Ecol. Food Nutr. 2011, 50, 240–262. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.; Aning, K.; Omore, A.; Nurah, G.; Osafo, E.; Staal, S. Risk factors in the hygienic quality of milk in Ghana. Open Food Sci. J. 2007, 1, 6–9. [Google Scholar] [CrossRef]
- Addo, K.; Mensah, G.; Aning, K.; Nartey, N.; Nipah, G.; Bonsu, C.; Akyeh, M.; Smits, H. Microbiological quality and antibiotic residues in informally marketed raw cow milk within the coastal savannah zone of Ghana. Trop. Med. Int. Health 2011, 16, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.R.; Singh, A.; Bhatt, S. Assessment of synthetic milk exposure to children of selected population in Uttar Pradesh, India. Indian J. Med. Res. 2008, 7, 22–34. [Google Scholar]
- Omore, A.; Lore, T.; Staal, S.; Kutwa, J.; Ouma, R.; Arimi, S.; Kang’ethe, E. Addressing the Public Health and Quality Concerns towards Marketed Milk in Kenya. Available online: https://cgspace.cgiar.org/handle/10568/2177 (accessed on 11 November 2018).
- Brown, J.; Cairncross, S.; Ensink, J.H. Water, sanitation, hygiene and enteric infections in children. Arch. Disease Childh. 2013, 98, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mara, D.; Lane, J.; Scott, B.; Trouba, D. Sanitation and health. PLoS Med. 2010, 7, e1000363. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Long, S.C.; Das, D.; Dorner, S.M. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J. Water Health 2011, 9, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Platts-Mills, J.A.; Juma, J.; Kabir, F.; Nkeze, J.; Okoi, C.; Operario, D.J.; Uddin, J.; Ahmed, S.; Alonso, P.L.; et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet 2016, 388, 1291–1301. [Google Scholar] [CrossRef]
- Liu, J.; Silapong, S.; Jeanwattanalert, P.; Lertsehtakarn, P.; Bodhidatta, L.; Swierczewski, B.; Mason, C.; McVeigh, A.L.; Savarino, S.J.; Nshama, R.; et al. Multiplex real time PCR panels to identify fourteen colonization factors of enterotoxigenic Escherichia coli (ETEC). PLoS ONE 2017, 12, e0176882. [Google Scholar] [CrossRef]
- Bhuyan, G.S.; Hossain, M.A.; Sarker, S.K.; Rahat, A.; Islam, M.T.; Haque, T.N.; Begum, N.; Qadri, S.K.; Muraduzzaman, A.K.; Islam, N.N.; et al. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city. PLoS ONE 2017, 12, e0174488. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.P.; Lapworth, D.J.; Read, D.S.; Nkhuwa, D.C.; Bell, R.A.; Chibesa, M.; Chirwa, M.; Kabika, J.; Liemisa, M.; Pedley, S. Tracing enteric pathogen contamination in sub-Saharan African groundwater. Sci. Total Environ. 2015, 538, 888–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, P. Rapid methods for the detection of foodborne pathogens: Current and next-generation technologies. In Food Microbiology: Fundamentals and Frontiers, 3rd ed.; American Society of Microbiology: Washington, DC, USA, 2007; pp. 911–934. [Google Scholar]
- Di Pinto, A.; Forte, V.; Guastadisegni, M.C.; Martino, C.; Schena, F.P.; Tantillo, G. A comparison of DNA extraction methods for food analysis. Food Control 2007, 18, 76–80. [Google Scholar] [CrossRef]
- Lusk, T.S.; Strain, E.; Kase, J.A. Comparison of six commercial DNA extraction kits for detection of Brucella neotomae in Mexican and Central American-style cheese and other milk products. Food Microbiol. 2013, 34, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Demeke, T.; Ratnayaka, I.; Phan, A. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean. J. Aoac Int. 2009, 92, 1136–1144. [Google Scholar] [PubMed]
- Shields, J.M.; Joo, J.; Kim, R.; Murphy, H.R. Assessment of three commercial DNA extraction kits and a laboratory-developed method for detecting Cryptosporidium and Cyclospora in raspberry wash, basil wash and pesto. J. Microbiol. Methods 2013, 92, 51–58. [Google Scholar] [CrossRef] [PubMed]
Variable | Category | Number of Samples | Percentage |
---|---|---|---|
Infant gender | Male | 58 | 46 |
Female | 69 | 54 | |
Marriage status of caregiver | Married | 108 | 85 |
Single | 17 | 13 | |
Divorced | 2 | 2 | |
Education level of caregiver | Some primary | 27 | 21 |
Complete primary | 35 | 28 | |
Some secondary | 27 | 21 | |
Complete secondary | 38 | 30 | |
Occupation | Agriculture | 1 | 1 |
Domestic service | 8 | 6 | |
Not employed | 60 | 47 | |
Managerial | 9 | 7 | |
Sales and service | 33 | 26 | |
Other | 6 | 4 | |
Missing | 10 | 8 | |
Village | A | 34 | 27 |
B | 35 | 28 | |
C | 24 | 19 | |
D | 34 | 27 | |
Infant age | 3–6 months | 30 | 24 |
More than 6 months | 97 | 76 |
Variable | Categories | Number of Samples | Percentage |
---|---|---|---|
Food type | Milk | 20 | 16 |
Porridge | 81 | 64 | |
Non-milk or porridge combined | 26 | 20 | |
Tea | 7 | 6 | |
Water | 13 | 10 | |
Other * | 6 | 5 | |
Container type | Bottle/feeding bottle/jug | 53 | 42 |
covered | 26 | 20 | |
Fresh food | 13 | 10 | |
Thermos | 24 | 19 | |
Uncovered | 11 | 9 | |
Month of sampling | January | 77 | 61 |
March | 30 | 24 | |
May | 20 | 16 | |
Owning animals | Yes | 43 | 34 |
No | 84 | 66 | |
Keeping animals inside | Yes | 78 | 61 |
No | 39 | 31 | |
Missing data | 10 | 8 | |
Sharing eating containers with family members | Yes | 43 | 34 |
No | 84 | 66 | |
Food preparation area | |||
Floor type in preparation area | Permeable floor | 26 | 20 |
Non-permeable floor | 101 | 80 | |
Flies in preparation area | Yes | 40 | 32 |
No | 77 | 61 | |
Missing data | 10 | 8 | |
Animal feces in preparation area | Yes | 10 | 8 |
No | 117 | 92 | |
Handwashing station in preparation area | Yes | 26 | 20 |
No | 101 | 80 | |
Feeding area | |||
Floor type in feeding area | Permeable floor | 22 | 17 |
Non-permeable floor | 105 | 83 | |
Flies present in feeding area | Yes | 40 | 31 |
No | 77 | 61 | |
Missing data | 10 | 8 | |
Animal feces present in feeding area | Yes | 10 | 8 |
No | 117 | 92 | |
Handwashing station in feeding area | Yes | 19 | 15 |
No | 108 | 85 |
Any Type of Pathogen | Overall (n = 127) | January (n = 77) | March (n = 30) | May (n = 20) |
---|---|---|---|---|
n (%) Positive | n (%) Positive | n (%) Positive | n (%) Positive | |
79 (62) | 40 (52) | 27 (90) | 12 (60) | |
Virus | ||||
Adenovirus 40/41 | 15 (12) | 3 (3) | 10 (33) | 2 (10) |
Adenovirus Hexon | 6 (5) | 1 (1) | 3 (10) | 2 (10) |
Norovirus | 9 (7) | 4 (5) | 3 (10) | 2 (10) |
Sapovirus | 1 (1) | 1 (1) | 0 (0) | 0 (0) |
Bacteria | ||||
EAEC | 6 (5) | 4 (5) | 2 (7) | 0 (0) |
EPEC | 21 (17) | 3 (4) | 15 (50) | 3 (15) |
ETEC | 17 (13) | 13 (17) | 3 (10) | 1 (5) |
EHEC O157 | 21 (17) | 0 (0) | 21 (70) | 0 (0) |
STEC | 5 (4) | 0 (0) | 5 (17) | 0 (0) |
EIEC/Shigella | 7 (6) | 4 (5) | 3 (10) | 0 (0) |
A. hydrophila | 25 (20) | 12 (16) | 5 (17) | 8 (40) |
B. Fragilis | 1 (1) | 0 (0) | 0 (0) | 1 (5) |
C. difficile | 11 (9) | 5 (7) | 5 (17) | 1 (5) |
Protozoa | ||||
Cryptosporidium spp. | 13 (10) | 10 (13) | 2 (7) | 1 (5) |
Variable | % positive (Total n) | Bivariate RR (95% CI) | p-Value | Multivariable RR (95% CI) | p-Value |
---|---|---|---|---|---|
Food | |||||
Porridge | 56 (81) | Ref | Ref | Ref | Ref |
Milk | 95 (20) | 14.4 (1.78–116.1) | 0.01 | 18.0 (1.85–175.6) | 0.01 |
Non-milk/porridge | 58 (26) | 0.79 (0.28–2.17) | 0.65 | 1.00 (0.33–1.12) | 1 |
Container Type | |||||
Covered | 77 (26) | 3.36 (0.57–19.9) | 0.18 | ||
Thermos | 75 (24) | 6.51 (1.10–38.6) | 0.04 | ||
Bottle/feeder/jug | 51 (53) | 2.50 (0.47–13.4) | 0.28 | ||
Uncovered | 55 (11) | Ref | Ref | ||
Fresh | 62 (13) | 2.21 (0.32–15.0) | 0.42 | ||
Owning Animals | |||||
Yes | 62 (84) | 1.08 (0.47–2.49) | 0.85 | ||
No | 63 (43) | Ref | Ref | ||
Keeping Animals Inside | |||||
Yes | 59 (78) | 0.74 (0.30–1.84) | 0.51 | ||
No | 67 (39) | Ref | Ref | ||
Missing | 70 (10) | None | None | ||
Sharing Containers | |||||
Yes | 51 (43) | 0.39 (0.16–0.92) | 0.03 | ||
No | 68 (84) | Ref | Ref | ||
Floor Permeability in Preparation Area | |||||
Permeable | 73 (26) | 1.45 (0.50–4.25) | 0.5 | ||
Nonpermeable | 59 (101) | Ref | Ref | ||
Flies in Preparation Area | |||||
Yes | 60 (40) | 0.90 (0.36–2.21) | 0.81 | ||
No | 62 (77) | Ref | Ref | ||
Feces in Preparation Area | |||||
Yes | 30 (10) | 0.21 (0.04–1.00) | 0.05 | 0.14 (0.02–0.90) | 0.04 |
No | 65 (117) | Ref | Ref | Ref | Ref |
Handwash Station in Preparation Area | |||||
Yes | 69 (26) | 1.58 (0.57–4.42) | 0.38 | ||
No | 60 (101) | Ref | Ref | ||
Floor Permeability in Feeding Area | |||||
Permeable | 73 (22) | 1.70 (0.55–5.25) | 0.36 | ||
Nonpermeable | 60 (105) | Ref | Ref | ||
Flies in Feeding Area | |||||
Yes | 54 (11) | 0.90 (0.41–1.98) | 0.81 | ||
No | 62 (106) | Ref | Ref | ||
Missing | 70 (10) | ||||
Feces in Feeding Area | |||||
Yes | 60 (10) | 1.23 (0.31–4.90) | 0.76 | ||
No | 62 (117) | Ref | Ref | ||
Handwash Station in Feeding Area | |||||
Yes | 68 (19) | 1.70 (0.54–5.28) | 0.36 | ||
No | 61 (108) | Ref | Ref |
Variable | Median (Range) Pathogen Types | Bivariate RR (95% CI) | p-Value | Multivariable RR (95% CI) | p-Value |
---|---|---|---|---|---|
Food | |||||
Porridge | 1 (5) | Ref | Ref | Ref | Ref |
Milk | 3 (9) | 2.35 (1.67–3.29) | <0.001 | 2.35 (1.67–3.29) | <0.001 |
Non-milk/porridge | 1 (5) | 0.76 (0.50–1.12) | 0.21 | 0.76 (0.50–1.12) | 0.21 |
Container Type | |||||
Covered | 2.5 (9) | 1.67 (0.92–3.00) | 0.09 | ||
Thermos | 1 (5) | 1.59 (0.82–3.07) | 0.17 | ||
Bottle/feeder/jug | 1 (4) | 1.41 (0.74–2.68) | 0.29 | ||
Fresh | 1 (3) | 0.93 (0.43–2.03) | 0.86 | ||
Uncovered | 2 (5) | Ref | Ref | ||
Owning Animals | |||||
Yes | 1 (9) | 1.29 (0.94–1.78) | 0.12 | ||
No | 1 (5) | Ref | Ref | ||
Keeping Animals Inside | |||||
Yes | 1 (9) | 1.09 (0.76–1.57) | 0.62 | ||
No | 1 (5) | Ref | Ref | ||
Missing | Missing | Missing (Missing) | |||
Sharing Containers | |||||
Yes | 1 (9) | 0.66 (0.46–0.96) | 0.03 | ||
No | 1 (5) | Ref | Ref | ||
Floor Permeability in Preparation Area | |||||
Permeable | 2 (5) | 0.95 (0.63–1.42) | 0.8 | ||
Non-permeable | 1 (9) | Ref | Ref | ||
Flies in Preparation Area | |||||
Yes | 1 (5) | 0.93 (0.64–1.35) | 0.7 | ||
No | 1 (9) | Ref | Ref | ||
Missing | Missing | Missing (Missing) | |||
Feces in Preparation Area | |||||
Yes | 1 (4) | 0.68 (0.33–1.41) | 0.3 | ||
No | 1 (9) | Ref | Ref | ||
Handwash Station in Preparation Area | |||||
Yes | 1.5 (4) | 1.29 (0.88–1.91) | 0.19 | ||
No | 1 (9) | Ref | Ref | ||
Floor Permeability in Feeding Area | |||||
Permeable | 2 (5) | 0.99 (0.64–1.51) | 0.96 | ||
Non-permeable | 1 (9) | Ref | Ref | ||
Flies in Feeding Area | |||||
Yes | 1 (9) | 1.13 (0.73–1.75) | 0.58 | ||
No | 1 (5) | Ref | Ref | ||
Missing | Missing | Missing (Missing) | |||
Feces in Feeding Area | |||||
Yes | 1 (4) | 1.31 (0.70–2.43) | 0.39 | ||
No | 1 (9) | Ref | Ref | ||
Handwash Station in Feeding Area | |||||
Yes | 1 (5) | 1.27 (0.80–2.00) | 0.32 | ||
No | 1 (9) | Ref | Ref |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, K.; Simiyu, S.; Mumma, J.; Aseyo, R.E.; Cumming, O.; Dreibelbis, R.; Baker, K.K. Enteric Pathogen Diversity in Infant Foods in Low-Income Neighborhoods of Kisumu, Kenya. Int. J. Environ. Res. Public Health 2019, 16, 506. https://doi.org/10.3390/ijerph16030506
Tsai K, Simiyu S, Mumma J, Aseyo RE, Cumming O, Dreibelbis R, Baker KK. Enteric Pathogen Diversity in Infant Foods in Low-Income Neighborhoods of Kisumu, Kenya. International Journal of Environmental Research and Public Health. 2019; 16(3):506. https://doi.org/10.3390/ijerph16030506
Chicago/Turabian StyleTsai, Kevin, Sheillah Simiyu, Jane Mumma, Rose Evalyne Aseyo, Oliver Cumming, Robert Dreibelbis, and Kelly K. Baker. 2019. "Enteric Pathogen Diversity in Infant Foods in Low-Income Neighborhoods of Kisumu, Kenya" International Journal of Environmental Research and Public Health 16, no. 3: 506. https://doi.org/10.3390/ijerph16030506
APA StyleTsai, K., Simiyu, S., Mumma, J., Aseyo, R. E., Cumming, O., Dreibelbis, R., & Baker, K. K. (2019). Enteric Pathogen Diversity in Infant Foods in Low-Income Neighborhoods of Kisumu, Kenya. International Journal of Environmental Research and Public Health, 16(3), 506. https://doi.org/10.3390/ijerph16030506