Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia
Abstract
:1. Introduction
2. Methods
2.1. Field Study Design
2.2. Measurement Approach
2.3. Data Analysis
3. Results and Discussion
3.1. Near-Railyard Pollution Trends
3.1.1. Concentrations and Estimated Background Contribution
3.1.2. Spatial Variation within Route under Various Wind Conditions
3.1.3. Multipollutant Spatial Correlation
3.2. Effect of Meteorology and Distance to Railyard
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- HEI Panel on the Health Effects of Traffic-Related Air Pollution. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- United States Census Bureau. American Housing Survey for the United States; United States Census Bureau: Suitland, MD, USA, 2007.
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Baldauf, R.; Thoma, E.; Khlystov, A.; Isakov, V.; Bowker, G.; Long, T.; Snow, R. Impacts of noise barriers on near-road air quality. Atmos. Environ. 2008, 42, 7502–7507. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Farrell, W.; Goldberg, M.; Joseph, L.; Hatzopoulou, M. Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environ. Res. 2014, 132, 305–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arunachalam, S.; Brantley, H.; Barzyk, T.M.; Hagler, G.; Isakov, V.; Kimbrough, E.S.; Naess, B.; Rice, N.; Snyder, M.G.; Talgo, K.; et al. Assessment of port-related air quality impacts: geographic analysis of population. Int. J. Environ. Pollut. 2015, 58, 231–250. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Tang, W. Simulation of rail yard emissions transport to the near-source environment. Atmos. Pollut. Res. 2016, 7, 469–476. [Google Scholar] [CrossRef]
- Turner, J.R.; Yadav, V.; Feinberg, S.N. Data analysis and dispersion modeling of the Midwest rail study (Phase I)–final report. Available online: http://www.ladco.org/reports/general/new_docs/WUSTL_MidwestRailStudy_FinalReport.pdf (accessed on 1 February 2014).
- Galvis, B.; Bergin, M.; Russell, A. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta. J. Air Waste Manag. Assoc. 2013, 63, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, M.; McGrath, J.; McEvoy, C.; Fuoco, M.; Hagler, G.; Thoma, E. Cicero Rail Yard Study (CIRYS) Final Report, EPA /600/R/12/621; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2014.
- Cahill, T.A.; Cahill, T.M.; Barnes, D.E.; Spada, N.J.; Miller, R. Inorganic and Organic Aerosols Downwind of California’s Roseville Railyard. Aerosol Sci. Technol. 2011, 45, 1049–1059. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Larson, T.; Gould, T.; Riley, E.A.; Austin, E.; Fintzi, J.; Sheppard, L.; Yost, M.; Simpson, C. Ambient air quality measurements from a continuously moving mobile platform: Estimation of area-wide, fuel-based, mobile source emission factors using absolute principal component scores. Atmosp. Environ. 2017, 152, 201–211. [Google Scholar] [CrossRef]
- Brantley, H.L.; Hagler, G.S.W.; Kimbrough, E.S.; Williams, R.W.; Mukerjee, S.; Neas, L.M. Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos. Meas. Tech. 2014, 7, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Kolb, C.E.; Herndon, S.C.; McManus, B.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.T.; Canagaratna, M.R.; Worsnop, D.R. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ. Sci. Technol. 2004, 38, 5694–5703. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112. [Google Scholar]
- Koenker, R.; Bassett, G. REGRESSION QUANTILES. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Koenker, R. Quantreg: Quantile Regression, R Package Version 5.34. Available online: https://CRAN.R-project.org/package=quantreg (accessed on 6 April 2018).
- Steffens, J.; Kimbrough, S.; Baldauf, R.; Isakov, V.; Brown, R.; Powell, A.; Deshmukh, P. Near-port air quality assessment utilizing a mobile measurement approach. Atmos. Pollut. Res. 2017, 8, 1023–1030. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
Measurement | Rate | Instrument |
---|---|---|
Carbon Dioxide (CO2) | 0.9 s | Licor 6262 (2) and Licor 820 |
Carbon Monoxide (CO) | 1 s | Aerodyne mini QC-TILDAS 1 (2230 cm−1) |
Nitric Oxide (NO) | 1 s | Thermo 42i Chemiluminescence |
Nitrogen Dioxide (NO2) | 1 s | Aerodyne Cavity Enhanced Phase Shift |
Oxides of Nitrogen (NOy) | 1.4 s | Thermo 42i with external inlet-tip Mo Converter |
Black Carbon (< 2.5 µm) | 3 s | Thermo 5012 Multi-Angle Absorption Photometer |
Particle Extinction | 3 s | Aerodyne Cavity Enhanced Phase Shift |
Particle Number Concentration | 1.8 s | TSI 3025A Condensation Particle Counter |
Aromatics and Oxygenates, including benzene, toluene, acetone, acetaldehyde | 1.4 s | Ionicon Quadrupole PTR-MS 1 |
Pollutant | N | N (obs) | Session Mean | Background Mean | Background Fraction |
---|---|---|---|---|---|
BC (μg m−3) | 18 | 157107 | 1.4 (0.64) | 0.33 (0.16) | 0.27 (0.14) |
CO (ppb) | 19 | 183693 | 270 (72) | 190 (24) | 0.74 (0.12) |
PN (cm−3) | 18 | 173049 | 6300 (2300) | 3900 (1600) | 0.61 (0.11) |
Ext. (Mm−1) | 15 | 150828 | 35 (13) | 27 (11) | 0.76 (0.077) |
NO (ppb) | 19 | 183041 | 11 (7) | 1 (0.59) | 0.1 (0.043) |
NO2 (ppb) | 19 | 181870 | 16 (7.3) | 5.2 (5) | 0.28 (0.14) |
NOy (ppb) | 18 | 181120 | 23 (12) | 5.5 (2.5) | 0.25 (0.068) |
Acetaldehyde (ppb) | 17 | 189208 | 2.2 (0.36) | 1.5 (0.3) | 0.68 (0.075) |
Benzene (ppb) | 17 | 189208 | 0.51 (0.073) | 0.26 (0.057) | 0.51 (0.095) |
Toluene (ppb) | 17 | 189208 | 0.48 (0.18) | 0.13 (0.032) | 0.28 (0.081) |
β0(intercept) | β1(calm) | β2(railyard) | β3(downwind) | β4(distance) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Independent | Spatial | Independent | Spatial | Independent | Spatial | Independent | Spatial | Independent | Spatial | |
NO | 0.76 (0.02) * | 0.66 (0.09) * | 0.41 (0.03) * | 0.53 (0.19) * | 0.66 (0.05) * | 0.59 (0.08) * | 0.11 (0.04) * | 0.37 (0.09) * | −0.90 (0.06) * | −0.79 (0.08) * |
NO2 | 2.06 (0.03) * | 1.85 (0.1) * | 0.46 (0.04) * | 0.71 (0.22) * | 0.62 (0.05) * | 0.67 (0.08) * | 0.21 (0.04) * | 0.51 (0.09) * | −0.75 (0.07) * | −0.47 (0.09) * |
NOy | 2.27 (0.02) * | 2.16 (0.07) * | 0.39 (0.03) * | 0.54 (0.15) * | 0.59 (0.04) * | 0.58 (0.06) * | 0.17 (0.03) * | 0.34 (0.07) * | −0.73 (0.05) * | −0.54 (0.07) * |
BC | −0.43 (0.02) * | −0.50 (0.06) * | 0.35 (0.03) * | 0.38 (0.13) * | 0.58 (0.04) * | 0.59 (0.05) * | 0.20 (0.03) * | 0.38 (0.05) * | −0.4 (0.05) * | −0.32 (0.06) * |
CO | 5.31 (0.01) * | 5.30 (0.02) * | 0.12 (0.01) * | 0.19 (0.05) * | 0.02 (0.01) | 0.04 (0.02) * | 0.03 (0.01) * | 0.02 (0.02) | 0.05 (0.01) * | 0.09 (0.02) * |
Ext. | 3.30 (0.01) * | 3.25 (0.06) * | 0.34 (0.02) * | 0.40 (0.13) * | 0.21 (0.03) * | 0.24 (0.04) * | 0.09 (0.02) * | 0.16 (0.04) * | −0.18 (0.04) * | −0.22 (0.04) * |
PN | 8.42 (0.01) * | 8.38 (0.04) * | 0.15 (0.02) * | 0.19 (0.08) * | 0.27 (0.02) * | 0.24 (0.03) * | 0.002 (0.02) | 0.13 (0.04) * | −0.30 (0.03) * | −0.30 (0.04) * |
Benz. | −0.85 (0.01) * | −0.84 (0.02) * | 0.13 (0.01) * | 0.14 (0.03) * | 0.03 (0.02) * | 0.01 (0.03) | 0.01 (0.01) | −0.01 (0.03) | −0.06 (0.02) * | −0.07 (0.04) |
Tol. | −1.31 (0.01) * | −1.23 (0.05) * | 0.30 (0.02) * | 0.32 (0.07) * | 0.24 (0.03) * | 0.12 (0.06) * | −0.01 (0.02) | −0.10 (0.07) | 0.12 (0.04) * | 0.04 (0.09) |
Acetal. | 0.70 (<0.01) * | 0.73 (0.02) * | 0.13 (0.01) * | 0.13 (0.03) * | 0.10 (0.01) * | 0.03 (0.02) | 0.08 (0.01) * | 0.05 (0.02) * | −0.06 (0.01) * | −0.14 (0.03) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brantley, H.L.; Hagler, G.S.W.; Herndon, S.C.; Massoli, P.; Bergin, M.H.; Russell, A.G. Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia. Int. J. Environ. Res. Public Health 2019, 16, 535. https://doi.org/10.3390/ijerph16040535
Brantley HL, Hagler GSW, Herndon SC, Massoli P, Bergin MH, Russell AG. Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia. International Journal of Environmental Research and Public Health. 2019; 16(4):535. https://doi.org/10.3390/ijerph16040535
Chicago/Turabian StyleBrantley, Halley L., Gayle S.W. Hagler, Scott C. Herndon, Paola Massoli, Michael H. Bergin, and Armistead G. Russell. 2019. "Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia" International Journal of Environmental Research and Public Health 16, no. 4: 535. https://doi.org/10.3390/ijerph16040535
APA StyleBrantley, H. L., Hagler, G. S. W., Herndon, S. C., Massoli, P., Bergin, M. H., & Russell, A. G. (2019). Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia. International Journal of Environmental Research and Public Health, 16(4), 535. https://doi.org/10.3390/ijerph16040535