Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
- ND: Normal diet
- HD: Hypercholesterolemic diet (2% cholesterol, 0.06% sodium deoxycholate)
- HD+ATV: HD + atorvastatin 0.09 mg/kg
- HD+EZT: HD + ezetimibe 1.66 mg/kg
- HD+DG: HD + diosgenin 5%
- HD+ATV+EZT: HD + atorvastatin 0.09 mg/kg+ ezetimibe 1.66 mg/kg
- HD+ATV+DG: HD + atorvastatin 0.09 mg/kg+ diosgenin 5%
2.2. Test Compounds
2.3. Biochemical Parameters
2.4. Statistical Analysis
3. Results
3.1. Biochemical Values
3.2. Destiny of Injected Labelled Cholesterol or Cholic Acid
3.3. Distribution of 14C-cholesterol in the Liver, Spinal Cord, Kidney, Testes, and Epididymus
3.4. Taurocholic Acid in the Liver, Intestine, and Serum
3.5. Fecal Elimination of Neutral Steroids
3.6. Fecal Elimination of Acidic Steroids
4. Discussion
4.1. Biochemical Parameters
4.2. Distribution of Labelled Cholesterol in Several Organs
4.3. Taurocholic Acid in the Liver, Intestine, and Serum and Fecal Elimination of Neutral and Acidic Steroids
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Miyares, M.A.; Davis, K. Patient considerations and clinical impact of cholesteryl ester transfer protein inhibitors in the management of dyslipidemia: Focus on anacetrapib. Vasc. Health Risk Manag. 2012, 8, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.J.; Le Goff, W.; Guerin, M.; Kontush, A. Cholesteryl ester transfer protein: At the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur. Heart J. 2010, 31, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.J.; Ahmed, Y.M.; Zamzami, M.A.; Mohamed, S.A.; Khan, I.; Baothman, O.A.S.; Mehanna, M.G.; Yasir, M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci. Rep. 2018, 8, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carstea, E.D.; Morris, J.A.; Coleman, K.G.; Loftus, S.K.; Zhang, D.; Cummings, C.; Gu, J.; Rosenfeld, M.A. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science 1997, 277, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Van Heek, M.; Farley, C.; Compton, D.S.; Hoos, L.; Davis, H.R. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. Br. J. Pharmacol. 2001, 134, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laguna, J.; Gómez-Puyou, A.; Peña, A.; Guzmán-García, J. Effect of diosgenin on cholesterol metabolism. J. Atheroscler. Res. 1962, 2, 459–470. [Google Scholar] [CrossRef]
- Scott, A.; Higdon, K.; Tucci, M.; Benghuzzi, H.; Puckett, A.; Tsao, A.; Cason, Z.; Hughes, J. The prevention of osteoporotic progression by means of steroid loaded TCPL drug delivery systems. Biomed. Sci. Instrum. 2001, 37, 13–18. [Google Scholar] [PubMed]
- El Barky, A.R.; Hussein, S.A.; Alm-Eldeen, A.A.; Hafez, Y.A.; Mohamed, T.M. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017, 7, 148–158. [Google Scholar]
- Yen, M.L.; Su, J.L.; Chien, C.L.; Tseng, K.W.; Yang, C.Y.; Chen, W.F.; Chang, C.C.; Kuo, M.L. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts. Mol. Pharmacol. 2005, 68, 1061–1073. [Google Scholar] [CrossRef]
- Hua, S.; Li, Y.; Su, L.; Liu, X. Diosgenin ameliorates gestational diabetes through inhibition of sterol regulatory element-binding protein-1. Biomed. Pharmacother. 2016, 84, 1460–1465. [Google Scholar] [CrossRef]
- Talbot, C.P.J.; Plat, J.; Ritsch, A.; Mensink, R.P. Determinants of cholesterol efflux capacity in humans. Prog. Lipid Res. 2017, 169, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Reeskamp, L.F.; Meessen, E.C.E.; Groen, A.K. Transintestinal cholesterol excretion in humans. Curr. Opin. Lipidol. 2018, 29, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, C.; Moreau, F.; Cariou, B.; Le May, C. Trans-intestinal cholesterol excretion (TICE): A new route for cholesterol excretion. Med. Sci. 2014, 30, 896–901. [Google Scholar]
- Fu, Z.D.; Cui, J.Y.; Klaassen, C.D. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J. Lipid. Res. 2014, 55, 2576–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, K.K.; Zhang, L.R.; Zhang, Y.; Hu, X.J. Interactions between CYP7A1 A-204C and ABCG8 C1199A polymorphisms on lipid lowering with atorvastatin. J. Clin. Pharm. Ther. 2011, 36, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.C.; Yang, F.; Yao, J.; Xie, W.; Tang, Y.Y.; Ouyang, X.P.; He, P.P.; Tan, Y.L.; Li, L.; Zhang, M.; et al. Diosgenin inhibits atherosclerosis via suppressing the miR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis 2015, 240, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Díaz Zagoya, J.C.; Laguna, J.; Guzmán-García, J. Studies on the regulation of cholesterol metabolism by the use of the structural analogue, diosgenin. Biochem. Pharmacol. 1971, 20, 3473–3480. [Google Scholar] [CrossRef]
- Bighetti, E.J.; Patrício, P.R.; Casquero, A.C.; Berti, J.A.; Oliveira, H.C. Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver. Lipids Health Dis. 2009, 8, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Wang, X.; Liu, J.; Long, Z.; Sun, Q.; Liu, Y.; Wang, L.; Zhang, X.; Hai, C. Effect of diosgenin on metabolic dysfunction: Role of ERβ in the regulation of PPARγ. Toxicol. Appl. Pharmacol. 2015, 289, 286–296. [Google Scholar] [CrossRef]
- Hao, S.; Xu, R.; Li, D.; Zhu, Z.; Wang, T.; Liu, K. Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats. Cell Biochem. Biophys. 2015, 72, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Kanchan, D.M.; Somani, G.S.; Peshattiwar, V.V.; Kaikini, A.A.; Sathaye, S. Renoprotective effect of diosgenin in streptozotocin induced diabetic rats. Pharmacol. Rep. 2016, 68, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Pi, W.X.; Feng, X.P.; Ye, L.H.; Cai, B.C. Combination of Morroniside and Diosgenin Prevents High Glucose-Induced Cardiomyocytes Apoptosis. Molecules 2017, 22, 163. [Google Scholar] [CrossRef] [PubMed]
- Temel, R.E.; Brown, J.M.; Ma, Y.; Tang, W.; Rudel, L.L.; Ioannou, Y.A.; Davies, J.P.; Yu, L. Diosgenin stimulation of fecal cholesterol excretion in mice is not NPC1L1 dependent. J. Lipid Res. 2009, 50, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Z.; Shu, N.; Xu, P.; Wang, F.; Zhong, Z.; Sun, B.; Li, F.; Zhang, M.; Zhao, K. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem. Pharmacol. 2016, 100, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, W.; Wang, Y.; Chen, L.; Yan, X. HMG-CoA reductase inhibitors, simvastatin and atorvastatin, downregulate ABCG1-mediated cholesterol efflux in human macrophages. J. Cardiovasc. Pharmacol. 2013, 62, 90–98. [Google Scholar] [CrossRef]
- Schonewille, M.; de Boer, J.F.; Mele, L.; Wolters, H.; Bloks, V.W.; Wolters, J.C.; Kuivenhoven, J.A.; Tietge, U.J.; Brufau, G.; Groen, A.K. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J. Lipid Res. 2016, 57, 1455–1464. [Google Scholar] [CrossRef] [Green Version]
- Szabó, K.; Gesztelyi, R.; Lampé, N.; Kiss, R.; Remenyik, J.; Pesti-Asbóth, G.; Priksz, D.; Szilvássy, Z.; Juhász, B. Fenugreek (Trigonella Foenum-Graecum) Seed Flour and Diosgenin Preserve Endothelium-Dependent Arterial Relaxation in a Rat Model of Early-Stage Metabolic Syndrome. Int. J. Mol. Sci. 2018, 19, 798. [Google Scholar] [CrossRef]
- McFarland, A.J.; Anoopkumar-Dukie, S.; Arora Devinder, S.; Grant Gary, D.; McDermott, C.M.; Perkins, A.V.; Davey, A.K. Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System. Int. J. Mol. Sci. 2014, 15, 20607–20637. [Google Scholar] [CrossRef] [Green Version]
- Niemi, M. Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther. 2010, 87, 130–133. [Google Scholar] [CrossRef]
- Parkinson, G.M.; Dayas, C.V.; Smith, D.W. Perturbed cholesterol homeostasis in aging spinal cord. Neurobiol. Aging 2016, 45, 123–135. [Google Scholar] [CrossRef] [PubMed]
- De Neergaard, R.; Nielsen, J.E.; Jørgensen, A.; Toft, B.G.; Goetze, J.P.; Jørgensen, N. Positive association between cholesterol in human seminal plasma and sperm counts: Results from a crosssectional cohort study and immunohistochemical investigations. Andrology 2018, 6, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Merkl, M.; Ertl, R.; Handschuh, S.; Aurich, C.; Schäfer-Somi, S. The cholesterol transporter ABCA1 is expressed in stallion spermatozoa and reproductive tract tissues. Theriogenology 2016, 85, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Langmann, T.; Heimer, S. Role of ABCG1 and other ABCG family members in lipid metabolism. J. Lipid Res. 2001, 42, 1513–1520. [Google Scholar] [PubMed]
- Uchida, K.; Takase, H.; Nomura, Y.; Takeda, K.; Takeuchi, N.; Ishikawa, Y. Changes in biliary and fecal bile acids in mice after treatments with diosgenin and beta-sitosterol. J. Lipid Res. 1984, 25, 236–245. [Google Scholar]
- Kosters, A.; Kunne, C.; Looije, N.; Patel, S.B.; Oude Elferink, R.P.; Groen, A.K. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J. Lipid Res. 2006, 47, 1959–1966. [Google Scholar] [CrossRef] [Green Version]
- McKoy, M.L.; Thomas, P.G.; Asemota, H.; Omoruyi, F.; Simon, O. Effects of Jamaican bitter yam (Dioscorea polygonoides) and diosgenin on blood and fecal cholesterol in rats. J. Med. Food 2014, 17, 1183–1188. [Google Scholar] [CrossRef]
- Davidson, M.H.; Voogt, J.; Luchoomun, J.; Decaris, J.; Killion, S.; Boban, D.; Glass, A.; Mohammad, H.; Lu, Y.; Villegas, D.; et al. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 2013, 230, 322–329. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kinch, L.N.; Borek, D.M.; Wang, J.; Urbatsch, I.L.; Xie, X.S.; Grishin, N.V.; Cohen, J.C. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 2016, 533, 561–564. [Google Scholar] [CrossRef]
- Basso, F.; Freeman, L.A.; Ko, C.; Joyce, C.; Amar, M.J.; Shamburek, R.D.; Tansey, T.; Thomas, F.; Wu, J.; Paigen, B.; et al. Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J. Lipid Res. 2007, 48, 114–126. [Google Scholar] [CrossRef]
- Li, G.L.; Guo, G. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Acta Pharm. Sin. 2015, B5, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Matye, D.; Zhang, Y.; Dennis, K.; Ding, W.X.; Li, T. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury. JCI Insight 2018, 3, 99676. [Google Scholar] [CrossRef] [PubMed]
- Mazzoccoli, G.; De Cosmo, S.; Mazza, T. The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis. Front. Physiol. 2018, 9, 193. [Google Scholar] [CrossRef] [PubMed]
ND | HD | HD+ATV | HD+DG | HD+EZT | HD+ATV+DG | HD+ATV+EZT | |
---|---|---|---|---|---|---|---|
Serum (mg/dL) | |||||||
Glucose | 96.4 ± 6.90 | 95.00 ± 5.75 | 90.20 ± 9.49 | 72.67 ± 1.7 *,# | 83.33 ± 4.68 *,# | 85.50 ± 4.45 | 97.00 ± 3.42 |
Cholesterol | 76.2 ± 3.29 | 161.5 ± 11.8 * | 119.2 ± 27.37 | 71.67 ± 9.64 # | 95.83 ± 13.62 # | 136.0 ± 12.52 | 81.83 ± 9.03 # |
Triacylglycerols | 58.60 ± 3.29 | 93.57 ± 10.26 * | 73.40 ± 10.3 | 50 ± 6.43 # | 65.67 ± 5.25 | 59.40 ± 4.49 # | 65.33 ± 9.03 |
Liver (mg/g) | |||||||
Cholesterol | 2.60 ± 0.35 | 17.39 ± 3.55 * | 3.717 ± 0.53 # | 13.65 ± 0.48 | 18.34 ± 2.5 | 11.25 ± 0.68 | 17.12 ± 1.49 |
Triacylglycerols | 24.61 ± 1.34 | 50.27 ± 1.01 * | 6.79 ± 1.8 # | 2.62 ± 0.4 # | 5.32 ± 1.29 # | 4.16 ± 0.62 # | 17.58 ± 0.63 # |
26-14C-Cholesterol (dpm/0.5 g Tissue or dpm/L Serum) | Liver | Spinal Cord | Kidney | Testis | Epididymis | Serum |
---|---|---|---|---|---|---|
ND | 689 ± 38.81 | 243 ± 99 | 1091 ± 127.37 | 114.0 ± 54.26 | 259 ± 37.57 | 360 ± 72.1 |
HD | 1574 ± 284.2 * | 669.4 ± 181 ,# | 615.8 ± 150 *,# | 297.7 ± 27.2 *,# | 483.7 ± 93 *,# | 517 ± 17 # |
HD+ATV | 905.4 ± 94.67 # | 2330 ± 859.4 * | 492.7 ± 98.75 # | 158.7 ± 26.02 # | 212.4 ± 44.74 # | 192.6 ± 13.01 *,# |
HD+DG | 590.9 ± 157.3 # | 566.7 ± 128.3 | 749.7 ± 164.2 | 177.4 ± 26.11 # | 90.8 ± 20.3 *,# | 260 ± 78.87 # |
HD+EZT | 1599 ± 140.0 | 584 ± 87.24 * | 1085 ± 208 # | 261.5 ± 45.60 * | 309.6 ± 145.8 | 378.2 ± 34.10 # |
HD+ATV+DG | 521.0 ± 82.7 # | 436.1 ± 82.69 | 263.9 ± 80 *,# | 126.5 ± 27.74 # | 80.16 ± 6.74 *,# | 135.6 ± 3.07 *,# |
HD+ATV+EZT | 688.7 ± 61.55 # | 295.2 ± 44.35 # | 866.5 ± 93.84 | 177.6 ± 8.432 # | 206.6 ± 19.80 # | 382.9 ± 45.67 # |
3H(G)-taurocholic Acid | ND | HD | HD+ATV | HD+DG | HD+EZT | HD+ATV+DG | HD+ATV+EZT |
---|---|---|---|---|---|---|---|
Liver (dpm/0.5 g of tissue ) | 152.6 ± 27.7 | 525.6 ± 38.29 * | 312.6 ± 41.72 # | 415.3 ± 25.97 # | 173.1 ± 51.35 # | 290.2 ± 31.83 # | 121.5 ± 16.29 # |
Intestine (dpm/0.5 g of tissue) | 93.28 ± 14.23 | 184.4 ± 27.67 * | 270.8 ± 79.6 | 1143 ± 283.2 *,# | 76.83 ± 23.16 # | 240.6 ± 0.68 | 156.9 ± 55.01 |
Serum (dpm/mL) | 91.06 ± 14.85 | 77.54 ± 15.65 | 68.58 ± 5.49 | 92.06 ± 17.54 | 69.38 ± 17.54 | 65.52 ± 5.046 | 79.27 ± 15.23 |
AUC (dpm × 103/0.5 g of Tissue) | ND | HD | HD+ATV | HD+DG | HD+EZT | HD+ATV+DG | HD+ATV+EZT |
26-14C-cholesterol | 12.44 ± 0.97 | 17.61 ± 1.66 * | 8.69 ± 1.16 # | 18.09 ± 1.44 | 7.2 ± 0.76 # | 20.92 ± 2.25 | 2.25 ± 1.44 # |
3H(G)-taurocholic acid | 6.37 ± 0.63 | 5.70 ± 0.49 | 6.15 ± 0.16 | 4.82 ± 0. 21 | 6.16 ± 0.29 | 6.45 ± 0.39 | 5.77 ± 0.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Medina, A.; Ruíz-Hidalgo, G.; Blé-Castillo, J.L.; Zetina-Esquivel, A.M.; Zamora, R.M.; Juárez-Rojop, I.E.; Díaz-Zagoya, J.C. Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats. Int. J. Environ. Res. Public Health 2019, 16, 627. https://doi.org/10.3390/ijerph16040627
Marín-Medina A, Ruíz-Hidalgo G, Blé-Castillo JL, Zetina-Esquivel AM, Zamora RM, Juárez-Rojop IE, Díaz-Zagoya JC. Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats. International Journal of Environmental Research and Public Health. 2019; 16(4):627. https://doi.org/10.3390/ijerph16040627
Chicago/Turabian StyleMarín-Medina, Alejandro, Gonzalo Ruíz-Hidalgo, Jorge L. Blé-Castillo, Alma M. Zetina-Esquivel, Rodrigo Miranda Zamora, Isela E. Juárez-Rojop, and Juan C. Díaz-Zagoya. 2019. "Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats" International Journal of Environmental Research and Public Health 16, no. 4: 627. https://doi.org/10.3390/ijerph16040627
APA StyleMarín-Medina, A., Ruíz-Hidalgo, G., Blé-Castillo, J. L., Zetina-Esquivel, A. M., Zamora, R. M., Juárez-Rojop, I. E., & Díaz-Zagoya, J. C. (2019). Combined Effect of Diosgenin Along with Ezetimibe or Atorvastatin on the Fate of Labelled Bile Acid and Cholesterol in Hypercholesterolemic Rats. International Journal of Environmental Research and Public Health, 16(4), 627. https://doi.org/10.3390/ijerph16040627