Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. In-Situ Experiment and Sampling
2.3. Chemical Analysis
3. Results and Discussion
3.1. Physical Analysis of Soil in Experimental Site
3.2. Properties of Reclaimed Water and Groundwater for Irrigation
3.3. Effects of Reclaimed Water Irrigation on Soil Characteristics
3.4. Effects of Reclaimed Water Irrigation on the Accumulation of Potentially Toxic Elements
3.5. Evaluation of Irrigated Soils and Shallow Groundwater Quality
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chopra, A.K.; Pathak, C. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ. Monit. Assess. 2015, 187, 445. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Shao, J.; Cui, Y.; Hao, Q. Calibration of two-dimensional variably saturated numerical model for groundwater flow in arid inland basin, China. Curr. Sci. 2017, 113, 403–412. [Google Scholar] [CrossRef]
- Adrover, M.; Farrús, E.; Moyà, G.; Vadell, J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manag. 2012, 95, S188–S192. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shao, J.; Frape, S.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: A case study from the Qaidam Basin, northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126. [Google Scholar] [CrossRef]
- Qadir, M.; Bahri, A.; Sato, T.; Alkaradsheh, E.; Drechsel, P.; Evans, A.E.V. Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrig. Drain. 2010, 24, 37–51. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Effect of Long-Term Irrigation with Treated Wastewater on the Root Zone Environment. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Teklehaimanot, G.Z.; Kamika, I.; Coetzee, M.A.A.; Momba, M.N.B. Seasonal variation of nutrient loads in treated wastewater effluents and receiving water bodies in Sedibeng and Soshanguve, South Africa. Environ. Monit. Assess. 2015, 187, 595. [Google Scholar] [CrossRef]
- Guo, W.; Andersen, M.N.; Xue-Bin, Q.I.; Ping, L.I.; Zhong-Yang, L.I.; Fan, X.Y.; Zhou, Y. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. J. Integr. Agric. 2017, 16, 679–690. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, H.; Lu, Y.; Shan, D.; Yu, X. Reclaimed water irrigation effect on agricultural soil and maize (Zea mays L.) in northern China. Clean Soil Air Water 2018, 46, 1800037. [Google Scholar] [CrossRef]
- Zhuang, J. The Fate and Impact of Pharmaceuticals and Personal Care Products in Agricultural Soils Irrigated with Reclaimed Water. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1379–1408. [Google Scholar]
- Smith, C.J.; Hopmans, P.; Cook, F.J. Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environ. Pollut. 1996, 94, 317–323. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, A.C.; Wu, L.; Crowley, D. Assessing the soil quality of long-term reclaimed wastewater-irrigated cropland. Geoderma 2003, 114, 261–278. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Lu, J.; Yuan, X.; Wu, J.; Zhao, J.; Yu, X.; Zhou, Y. Concentrations, Bioavailability, and Spatial Distribution of Soil Heavy Metals in a Long-Term Wastewater Irrigation Area in North China. Clean Soil Air Water 2014, 42, 331–338. [Google Scholar]
- Jin, A.; He, J.; Chen, S.; Huang, G. Distribution and transport of PAHs in soil profiles of different water irrigation areas in Beijing, China. Environ. Sci. Process. Impacts 2014, 16, 1526–1534. [Google Scholar] [CrossRef]
- Christou, A.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Assessment of long-term wastewater irrigation impacts on the soil geochemical properties and the bioaccumulation of heavy metals to the agricultural products. Environ. Monit. Assess. 2014, 186, 4857–4870. [Google Scholar] [CrossRef]
- Bao, Z.; Wu, W.; Liu, H.; Chen, H.; Yin, S. Impact of Long-Term Irrigation with Sewage on Heavy Metals in Soils, Crops, and Groundwater—A Case Study in Beijing. Pol. J. Environ. Stud. 2014, 23, 309–318. [Google Scholar]
- Niu, Y.; Yin, S.; Liu, H.; Wu, W.; Li, B. Use of Geostatistics to Determine the Spatial Variation of Groundwater Quality: A Case Study in Beijing’s Reclaimed Water Irrigation Area. Pol. J. Environ. Stud. 2015, 24, 611–618. [Google Scholar]
- Gu, X.; Xiao, Y.; Yin, S.; Pan, X.; Niu, Y.; Shao, J.; Cui, Y.; Zhang, Q.; Hao, Q. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environ. Monit. Assess. 2017, 189, 514. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Hao, Q.; Liu, H.; Hao, Z.; Meng, G.; Pei, Q.; Yan, H. Hydrogeochemical Characterization and Quality Assessment of Groundwater in a Long-Term Reclaimed Water Irrigation Area, North China Plain. Water 2018, 10, 1209. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Wen, X.; Chang, A.C. Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig. Sci. 2019, 37, 35–47. [Google Scholar] [CrossRef]
- Lin, C.; Negev, I.; Eshel, G.; Banin, A. In situ accumulation of copper, chromium, nickel, and zinc in soils used for long-term waste water reclamation. J. Environ. Qual. 2008, 37, 1477–1487. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Pei, L. Study on the Effects of Irrigation with Reclaimed Water on the Content and Distribution of Heavy Metals in Soil. Int. J. Environ. Res. Public Health 2016, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Tunc, T.; Sahin, U. Yield and Heavy Metal Content of Wastewater-Irrigated Cauliflower and Soil Chemical Properties. Commun. Soil Sci. Plant. Anal. 2017, 48, 1194–1211. [Google Scholar] [CrossRef]
- Yin, S.; Wu, W.; Liu, H.; Bao, Z. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area. J. Contam. Hydrol. 2016, 193, 1–9. [Google Scholar] [CrossRef]
- Meng, G. Influence of Reclaimed Water Irrigation on Groundwater Level and Optimized Water Management in Irrigation region, Northeastern Beijing. Beijing Water 2014, 6, 45–49. (In Chinese) [Google Scholar]
- Marinus, G. Standards for irrigation efficiencies of ICID. J. Irrig. Drain. Div. ASCE 1979, 105, 37–43. [Google Scholar]
- Wu, W. Research on Groundwater Vulnerability Experiment of Reclaimed Wastewater District and Irrigation Allocation; China Unversity of Geosciences: Beijing, China, 2009. [Google Scholar]
- Konen, M.E.; Jacobs, P.M.; Burras, C.L.; Talaga, B.J.; Mason, J.A. Equations for Predicting Soil Organic Carbon Using Loss-on-Ignition for North Central U.S. Soils. Soil Sci. Soc. Am. J. 2002, 66, 1878–1881. [Google Scholar] [CrossRef]
- Buurman, P.; Pape, T.; Reijneveld, J.A.; De Jong, F.; Van Gelder, E. Laser-diffraction and pipette-method grain sizing of Dutch sediments: Correlations for fine fractions of marine, fluvial, and loess samples. Neth. J. Geosci. 2001, 80, 49–57. [Google Scholar]
- Andrews, D.M.; Robb, T.; Elliott, H.; Watson, J.E. Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: “The Living Filter” site case study. Agric. Water Manag. 2016, 178, 239–247. [Google Scholar] [CrossRef]
- Murtaza, G.; Ghafoor, A.; Qadir, M. Accumulation and implications of cadmium, cobalt and manganese in soils and vegetables irrigated with city effluent. J. Sci. Food Agric. 2008, 88, 100–107. [Google Scholar] [CrossRef]
- Stewart, H.T.L.; Hopmans, P.; Flinn, D.W. Nutrient accumulation in trees and soil following irrigation with municipal effluent in Australia. Environ. Pollut. 1990, 63, 155–177. [Google Scholar] [CrossRef]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Gwenzi, W.; Munondo, R. Long-term impacts of pasture irrigation with treated sewage effluent on nutrient status of a sandy soil in Zimbabwe. Nutr. Cycl. Agroecosys. 2008, 82, 197–207. [Google Scholar] [CrossRef]
- Han, J.X.; Jian-Hua, M.A.; Wei, L.H. Effect of Sewage Irrigation on Content and Distribution of Heavy Metals in Alluvial Meadow Soil—A Case Study of the Huafei River Sewage Irrigation Region in Kaifeng City. Soils 2006, 38, 292–297. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, F.; Clemente, L.; Barrientos, E.D.A.; López, R.; Murillo, J.M. Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci. Total Environ. 1999, 242, 117–129. [Google Scholar] [CrossRef] [Green Version]
Plot No. | Leakage Depth a (m) | Total Leakage Amount b (m3) | Simulated Irrigation Time c (a) | Irrigation Rate (cm/h) |
---|---|---|---|---|
#1 | 6.1 | 2210.2 | 13 | 0.5 |
#5 | 10.4 | 3740.6 | 22 | 5 |
#7 | 16.5 | 5950.4 | 35 | 5 |
Depth (m) | Coarse Sand (%) | Fine Sand (%) | Very Fine Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|
0~0.5 | — | — | 12.0 | 62.2 | 25.8 |
0.5~1 | — | 0.7 | 27.1 | 51.1 | 21.1 |
1~2 | 1.3 | 2.0 | 56.5 | 36.2 | 4.0 |
2~3 | — | 2.6 | 30.8 | 55.2 | 11.4 |
3–4.6 | — | — | 1.9 | 81.8 | 16.4 |
4.6–6.2 | — | — | 4.5 | 72.5 | 23.0 |
Index | RW | CGW | Groundwater Quality Standard (Class III) |
---|---|---|---|
pH | 7.7 ± 0.1 | 7.5 ± 0.11 | 6.5–8.5 |
EC (μS/cm) | 2120 ± 2.0 | 946 ± 1.0 | — |
As (μg/L) | 18.5 ± 0.01 | 2.0 ± 0.01 | 50 |
Cd (μg/L) | 17.0 ± 0.02 | 5.0 ± 0.01 | 10 |
Cr (μg/L) | 12.2 ± 0.02 | 4.0 ± 0.01 | 100 |
Zn (μg/L) | 115.2 ± 0.04 | 6 ± 0.03 | 200 |
Hg (μg/L) | 5.0 ± 0.01 | 0.01 ± 0.01 | 1.0 |
Pb (μg/L) | 0.7 ± 0.02 | 0.9 ± 0.01 | 20 |
Parameters | Irrigation | Mean ± SD Values in Different Depth | ||||
---|---|---|---|---|---|---|
Years | 0–100 cm | 100~200 cm | 200~300 cm | 300~500 cm | 500~620 cm | |
pH | 0 | 8.30 ± 0.29 | 8.57 ± 0.14 | 8.35 ± 0.10 | 8.27 ± 0.11 | 8.13 ± 0.02 |
13 | 8.42 ± 0.08 | 8.68 ± 0.18 | 8.52 ± 0.07 | 8.33 ± 0.19 | 8.19 ± 0.03 | |
22 | 8.52 ± 0.13 | 8.94 ± 0.15 | 8.72 ± 0.17 | 8.62 ± 0.19 | 8.38 ± 0.08 | |
35 | 8.31 ± 0.07 | 8.57 ± 0.11 | 8.31 ± 0.02 | 8.17 ± 0.05 | 8.15 ± 0.07 | |
EC(μS/cm) | 0 | 14.62 ± 6.03 | 13.06 ± 0.80 | 15.10 ± 3.55 | 12.49 ± 2.54 | 15.10 ± 2.12 |
13 | 15.45 ± 0.95 | 13.48 ± 2.28 | 16.86 ± 1.59 | 26.14 ± 13.04 | 29.33 ± 0.90 | |
22 | 15.55 ± 0.69 | 11.74 ± 1.72 | 17.98 ± 3.28 | 20.74 ± 5.50 | 33.20 ± 6.58 | |
35 | 15.54 ± 1.39 | 9.78 ± 1.23 | 14.50 ± 1.27 | 14.32 ± 3.43 | 17.43 ± 4.93 | |
OM (%) | 0 | 0.92 ± 0.32 | 0.27 ± 0.02 | 0.46 ± 0.24 | 0.71 ± 0.45 | 1.36 ± 0.30 |
13 | 0.79 ± 0.28 | 0.44 ± 0.17 | 0.48 ± 0.09 | 0.93 ± 0.49 | 1.36 ± 0.31 | |
22 | 0.92 ± 0.32 | 0.27 ± 0.02 | 0.46 ± 0.24 | 0.71 ± 0.45 | 1.36 ± 0.30 | |
35 | 0.87 ± 0.32 | 0.19 ± 0.13 | 0.39 ± 0.17 | 0.80 ± 0.36 | 0.83 ± 0.36 |
PTEs | Irrigation Years (a) | Mean ± SD Values in Different Depth | ||||
---|---|---|---|---|---|---|
0–100 cm | 100~200 cm | 200~300 cm | 300~500 cm | 500~620 cm | ||
As (μg/g) | 0 | 7.33 ± 2.6 | 4.06 ± 0.3 | 7.79 ± 2.1 | 7.0 ± 1.4 | 7.22 ± 1.9 |
13 | 9.02 ± 1.7 | 6.87 ± 1.3 | 8.19 ± 1.5 | 7.18 ± 3.3 | 13.87 ± 1.8 | |
22 | 7.82 ± 2.9 | 4.23 ± 0.4 | 8.17 ± 1.0 | 7.00 ± 1.1 | 8.10 ± 2.3 | |
35 | 11.09 ± 2.5 | 4.27 ± 0.4 | 9.74 ± 1.1 | 7.84 ± 1.2 | 6.79 ± 0.8 | |
Cd (μg/g) | 0 | 104.5 ± 27.2 | 70.96 ± 7.7 | 89.24 ± 12.7 | 92.46 ± 20.6 | 94.8 ± 20.9 |
13 | 105.2 ± 27.4 | 68.88 ± 11.8 | 97.52 ± 31.5 | 88.22 ± 33.2 | 170.33 ± 4.4 | |
22 | 102.3 ± 41.3 | 64.18 ± 4.9 | 88.58 ± 16.6 | 86.94 ± 13.9 | 102.73 ± 28.8 | |
35 | 129.9 ± 31.6 | 64.86 ± 2.1 | 101.8 ± 24.1 | 116.3 ± 29.1 | 110.2 ± 31.3 | |
Cr (μg/g) | 0 | 70.40 ± 6.6 | 68.72 ± 1.9 | 69.95 ± 12.4 | 63.06 ± 7.7 | 66.78 ± 5.3 |
13 | 65.94 ± 5.5 | 57.11 ± 6.3 | 66.99 ± 9.3 | 61.49 ± 11.3 | 82.58 ± 1.8 | |
22 | 64.37 ± 7.0 | 55.59 ± 4.5 | 65.08 ± 17.0 | 61.41 ± 6.1 | 65.65 ± 7.2 | |
35 | 70.45 ± 4.5 | 64.41 ± 6.6 | 69.70 ± 7.9 | 74.25 ± 7.7 | 67.46 ± 4.2 | |
Hg (μg/g) | 0 | 22.05 ± 13.8 | 6.84 ± 0.3 | 10.58 ± 1.1 | 12.57 ± 2.4 | 13.78 ± 2.1 |
13 | 23.57 ± 10.7 | 10.92 ± 2.2 | 16.17 ± 3.2 | 16.34 ± 4.2 | 27.79 ± 4.6 | |
22 | 21.58 ± 14.8 | 7.04 ± 0.7 | 13.13 ± 2.1 | 15.86 ± 6.9 | 16.63 ± 3.7 | |
35 | 36.49 ± 9.6 | 8.40 ± 1.9 | 15.54 ± 3.8 | 15.54 ± 2.7 | 15.93 ± 0.3 | |
Pb (μg/g) | 0 | 19.16 ± 1.9 | 17.16 ± 0.1 | 17.46 ± 0.4 | 17.05 ± 1.9 | 18.15 ± 0.9 |
13 | 19.38 ± 1.9 | 16.25 ± 1.1 | 18.42 ± 2.8 | 17.18 ± 2.8 | 24.98 ± 0.5 | |
22 | 18.93 ± 2.6 | 16.98 ± 0.3 | 17.84 ± 2.0 | 16.85 ± 1.2 | 20.26 ± 3.0 | |
35 | 21.54 ± 1.4 | 17.41 ± 0.3 | 19.18 ± 1.7 | 20.07 ± 2.6 | 20.04 ± 1.6 | |
Zn (μg/g) | 0 | 54.83 ± 7.4 | 48.2 ± 1.2 | 58.42 ± 2.9 | 58.28 ± 10.3 | 60.97 ± 9.7 |
13 | 56.81 ± 5.7 | 43.54 ± 6.6 | 56.98 ± 10.2 | 52.84 ± 17.1 | 83.37 ± 1.8 | |
22 | 51.79 ± 10.4 | 43.06 ± 0.6 | 55.1 ± 10.0 | 53.76 ± 6.7 | 60.23 ± 11.5 | |
35 | 63.77 ± 6.0 | 44.38 ± 1.2 | 61.76 ± 8.1 | 68.29 ± 10.9 | 59.62 ± 7.9 |
Types | PTEs Values in Groundwater (ug/L) | |||||
---|---|---|---|---|---|---|
As | Cd | Cr | Zn | Hg | Pb | |
Monitoring well (experimental site) | 1.9 | 0.013 | 18.8 | 1.9 | 0.012 | 0.21 |
Monitoring well (control plot) | 2.1 | 0.006 | 15.3 | 1.5 | 0.009 | 0.16 |
Groundwater Quality Standard (class I) | 5.0 | 0.1 | 5.0 (Cr6+) | 50 | 0.05 | 5.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Xiao, Y.; Yin, S.; Liu, H.; Men, B.; Hao, Z.; Qian, P.; Yan, H.; Hao, Q.; Niu, Y.; et al. Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. Int. J. Environ. Res. Public Health 2019, 16, 649. https://doi.org/10.3390/ijerph16040649
Gu X, Xiao Y, Yin S, Liu H, Men B, Hao Z, Qian P, Yan H, Hao Q, Niu Y, et al. Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. International Journal of Environmental Research and Public Health. 2019; 16(4):649. https://doi.org/10.3390/ijerph16040649
Chicago/Turabian StyleGu, Xiaomin, Yong Xiao, Shiyang Yin, Honglu Liu, Baohui Men, Zhongyong Hao, Peng Qian, Huijun Yan, Qichen Hao, Yong Niu, and et al. 2019. "Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain" International Journal of Environmental Research and Public Health 16, no. 4: 649. https://doi.org/10.3390/ijerph16040649
APA StyleGu, X., Xiao, Y., Yin, S., Liu, H., Men, B., Hao, Z., Qian, P., Yan, H., Hao, Q., Niu, Y., Huang, H., & Pei, Q. (2019). Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. International Journal of Environmental Research and Public Health, 16(4), 649. https://doi.org/10.3390/ijerph16040649