The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Preparation
2.3. Total Trace Metal Concentrations
2.4. Contamination Factor
2.5. Statistical Analysis
3. Results and Discussion
3.1. General Soil Characteristics
3.2. Total Concentrations of Trace Metals in Roadside Agricultural Soils
3.3. Relationships of Soil Trace Metal Concentrations with Distance from the Highway and Traffic Density
3.3.1. Distance from the Highway
3.3.2. Traffic Density
3.4. Geochemical Affinity in Roadside Agricultural Soils
3.5. Contamination Factor of the Trace Metals Concentration in Roadside Agricultural Soils
4. Conclusions
- Rice: Zn > V > Cr > Cu > Pb ≈ Ni > Co > Cd;
- Maize: V ≈ Zn > Cr > Cu ≈ Ni > Co > Pb > Cd;
- Sugarcane: Zn > V > Cr ≈ Cu > Pb > Co > Ni > Cd.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, X.; Zhang, F.; Zeng, C.; Zhang, M.; Devkota, L.P.; Yao, T. Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. Int. J. Environ. Res. Public Health 2012, 9, 3209–3226. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.B.; Kathi, S. Evaluation of heavy metal and total petroleum hydrocarbon contamination of roadside surface soil. Int. J. Environ. Sci. Technol. 2014, 11, 2259–2270. [Google Scholar] [CrossRef]
- Olutona, G.O.; Oyekunle, J.A.O.; Dawodu, M.O.; Ogunwale, T.O.; Kehinde, P. Physicochemical characteristics of soil and health risk assessment of potentially toxic metals in soil and vegetables from roadside farmlands in Iwo, Southwestern Nigeria. J. Environ. Sci. Pollut. Res. 2017, 3, 213–218. [Google Scholar]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xia, X.; Zhao, Y.; Zhang, P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010, 181, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Hui, Z.; Caiqiu, W.; Jiping, G.; Xuyin, Y.; Qiao, W.; Wenming, P.; Tao, L.; Jie, Q.; Hanpei, Z. Assessment of heavy metal contamination in roadside soils along the Shenyang-Dalian highway in Liaoning province, China. Pol. J. Environ. Stud. 2017, 26, 1539–1549. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Pulles, T.; Denier van der Gon, H.; Appelmana, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.S.T.; Bergbäck, G.; Häggerud, V. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef] [PubMed]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-ruralgradient in Massachusetts. Atmos. Environ 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Carrero, J.A.; Arrizabalaga, I.; Bustamante, J.; Goienaga, N.; Arana, G.; Madariaga, J.M. Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of traffic-related elements. Sci. Total Environ. 2013, 458–460, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Fakayode, S.O.; Olu-Owolabi, B.I. Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environ. Geol. 2003, 44, 150–157. [Google Scholar] [CrossRef]
- Viard, B.; Pihan, F.; Promeyrat, S.; Pihan, J.C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, G.; MacKenzie, A.B.; Cook, G.T.; Pulford, I.D.; Duncan, H.J.; Scott, E.M. Spatial and temporal variations in Pb concentrations and isotopic composition in roaddust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK. Sci. Total Environ. 2011, 409, 5010–5019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yan, X.; Zeng, C.; Zhang, M.; Shrestha, S.; Devkota, L.P.; Yao, T. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. Int. J. Environ. Res. Public Health 2012, 9, 1715–1731. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.D.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Highway Safety. Annual Average Daily Traffic on Highways 2014; Bureau of Highway Safety, Department of Highways, Ministry of Transport: Bangkok, Thailand, 2015; pp. 20–26.
- Bureau of Highway Safety. Annual Average Daily Traffic on Highways 2015; Bureau of Highway Safety, Department of Highways, Ministry of Transport: Bangkok, Thailand, 2016; pp. 20–26.
- Soil survey staff. Obsolete methods, part IV: SSIR No. 1, Procedures for collecting soil samples and methods of analysis for soil survey. In Kellogg Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 5.0; Burt, R., Soil Survey Staff, Eds.; USDA–NRCS, GPO: Washington, DC, USA, 2014; pp. 890–992. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Alloway, B.J. The origins of heavy metals in soils. In Heavy Metals in Soils, 2nd ed.; Alloway, B.J., Ed.; Blackie Academic and Professional Publ.: New York, NY, USA, 1995; pp. 38–57. [Google Scholar]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Sanethong, C.; Supaphol, S.; Panichsakpatana, S. Distribution of Zn, Pb, and Cd from traffic smog in vegetables fields: Urban of Saraburi province. Thai J. Soils and Fertilizers (Thailand) 2008, 30, 166–179. (In Thai) [Google Scholar]
- Maneerat, T.; Le, V.V.; Poopa, T.; Kusakulrat, Y.; Prechthai, T. Heavy metal concentration in total suspended particulate matter along highway (Bangna-Trad) kilometers 18. Huachiew Chalermprakiet Sci. Technol. J. 2017, 3, 61–68. (In Thai) [Google Scholar]
- Ignatavičius, G.; Valskys, V.; Bulskaya, I.; Paliulis, D.; Zigmontienė, A.; Satkūnas, J. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania. Est. J. Earth Sci. 2017, 66, 13–20. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Maiti, S.K. Evaluation of heavy metal contamination in roadside deposited sediments and road surface runoff: a case study. Environ. Earth Sci. 2018, 77, 267. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils And their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar]
- Gustafsson, J.P.; Pechova, P. Modeling metal binding to soils: the role of natural organic matter. Environ. Sci. Technol. 2003, 37, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, J.; Barbara, G. Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands. J. Hazard. Mater. 2012, 237–238, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Ketrot, D.; Suddhiprakarn, A.; Kheoruenromne, I.; Singh, B. Association of trace elements and dissolution rates of soil iron oxides. Soil Res. 2014, 52, 1–12. [Google Scholar] [CrossRef]
Plantation | Highway No. | Distance (m) | Trace Metals (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Ni | Pb | V | Zn | |||
Rice | 340 | 0–100 | 0.28–0.48 | 11.6–17.5 | 22.2–37.7 | 27.5–33.6 | 20.2–29.6 | 10.5–14.4 | 45.0–82.0 | 59.9–72.1 |
3365 | 0–100 | 0.10–0.62 | 3.4–8.6 | 19.9–31.8 | 13.7–23.2 | 6.7–14.8 | 22.8–43.9 | 21.5–59.3 | 11.4–284 | |
3032 | 0–100 | 0.24–0.74 | 13.0–14.9 | 47.6–68.6 | 26.6–45.6 | 28.8–42.7 | 10.2–43.0 | 70.3–110 | 70.6–236 | |
Maize | 2 | 0–100 | 0.18–0.60 | 12.5–35.3 | 35.3–44.8 | 7.4–32.4 | 8.6–19.3 | 9.4–27.4 | 35.2–66.3 | 15.6–157 |
2090 | 0–100 | 0.63–2.08 | 26.2–50.5 | 191–526 | 26.4–60.0 | 44.0–113 | 9.7–16.0 | 161–571 | 58.9–93.1 | |
2256 | 0–100 | 0.06–0.20 | 6.1–9.6 | 18.6–32.1 | 10.3–11.6 | 16.3–20.9 | 7.8–15.5 | 47.8–60.3 | 28.3–37.3 | |
2273 | 0–100 | 0.41–0.69 | 23.5–33.0 | 54.0–95.8 | 32.4–39.9 | 36.0–70.2 | 6.1–9.4 | 86.6–157 | 77.9–108 | |
Sugarcane | 344 | 0–100 | 0.05–1.29 | 2.8–15.4 | 17.5–49.7 | 13.0–53.2 | 2.83–19.43 | 11.1–28.8 | 17.8–63.2 | 22.5–159 |
331 | 0–100 | 0.13–1.29 | 6.1–14.3 | 31.6–73.8 | 14.6–146 | 12.1–28.7 | 13.1–54.3 | 44.0–77.8 | 48.5–489 | |
3246 | 0–100 | 0.07–1.83 | 2.4–9.2 | 8.8–40.4 | 11.2–39.0 | 3.8–16.7 | 7.2–27.1 | 18.3–68.6 | 13.2–188 | |
3245 | 0–100 | 0.14–1.30 | 19.2–42.6 | 51.7–73.3 | 15.6–76.2 | 10.6–25.1 | 12.9–66.1 | 74.4–117 | 38.5–302 | |
Critical value [28] | 3–8 | 25–50 | 75–100 | 60–125 | 100 | 100–400 | 5–10 | 50–100 | ||
Thailand [29] | 0.03 | 6.0 | 25.2 | 14.1 | 13.5 | 17.5 | - | 23.9 | ||
Saraburi, Thailand [30] | 1.3–3.7 | - | - | - | - | 16.1–30.6 | - | 68.3–151.5 | ||
Beijing, China [8] | 0.22 | - | 61.9 | 29.7 | 26.7 | 35.4 | - | - | ||
Tibetan Plateau, China [9] | 0.13 | 8.1 | 54.3 | 18.4 | 20.4 | 18.5 | – | 51.7 |
Trace Metals | Distance | Traffic Density |
---|---|---|
Total Cd | −0.176 * | −0.108 |
Total Co | −0.063 | −0.188 * |
Total Cr | 0.061 | −0.125 |
Total Cu | −0.220 ** | −0.109 |
Total Ni | 0.001 | −0.048 |
Total Pb | −0.323 ** | −0.129 |
Total V | 0.075 | −0.104 |
Total Zn | −0.359 ** | −0.104 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krailertrattanachai, N.; Ketrot, D.; Wisawapipat, W. The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand. Int. J. Environ. Res. Public Health 2019, 16, 714. https://doi.org/10.3390/ijerph16050714
Krailertrattanachai N, Ketrot D, Wisawapipat W. The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand. International Journal of Environmental Research and Public Health. 2019; 16(5):714. https://doi.org/10.3390/ijerph16050714
Chicago/Turabian StyleKrailertrattanachai, Nattanan, Daojarus Ketrot, and Worachart Wisawapipat. 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand" International Journal of Environmental Research and Public Health 16, no. 5: 714. https://doi.org/10.3390/ijerph16050714
APA StyleKrailertrattanachai, N., Ketrot, D., & Wisawapipat, W. (2019). The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand. International Journal of Environmental Research and Public Health, 16(5), 714. https://doi.org/10.3390/ijerph16050714