Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China
Abstract
:1. Introduction
2. Case Study of the YREB Water Resources Allocation
2.1. Background Information
2.2. Data Sources
3. Model Construction
3.1. Assumptions
3.2. Water Footprint Accounting
3.2.1. Calculation of WF1i
3.2.2. Calculation of WF2i
3.2.3. Calculation of WF3i
3.2.4. Calculation of WF4i
3.3. A Lexicographic Allocation of Water Footprints (LAWF) Model
3.4. An Input-Output Capacity of Water Footprint (IOWF) Model
4. Allocation Result
4.1. A Lexicographic Allocation Scheme of Water Footprints in the YREB
4.2. Input-Output Capacity of Water Footprints (IOWF) in the YREB under the Lexicographic Allocation Scheme
4.3. Validation of the Model Results
5. Analysis and Discussion
5.1. Analysis of Water Footprint Reductions in the YREB under the Lexicographic Allocation
5.2. Impact Analysis of Industrial Attributes on the Iowfs of the LAWF Scheme in the YREB
5.3. Analysis of Natural Endowments and Their Impact on the IOWFs of the LAWF Scheme in the YREB
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Data for Water Footprint Accounting
Item | Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai |
---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | 3.92 | 48.45 | 7.59 | 5.77 | 52.10 | 1.39 | 0.34 | 187.81 | 214.76 | 3.53 | 0.00 |
Barley | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.42 | 0.50 | 0.00 |
Broad bean | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.88 | 1.24 | 0.00 |
Paddy | 58.36 | 181.29 | 53.46 | 36.85 | 231.38 | 330.44 | 284.57 | 70.84 | 80.73 | 96.89 | 0.00 |
Maize | 16.78 | 45.74 | 53.53 | 19.97 | 19.49 | 13.14 | 0.91 | 34.93 | 17.75 | 2.41 | 0.00 |
Sorghum | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Potato | 7.70 | 9.11 | 7.53 | 7.64 | 3.44 | 5.32 | 0.00 | 1.42 | 1.40 | 1.78 | 0.00 |
Soybean | 7.55 | 10.13 | 3.87 | 1.34 | 3.76 | 0.00 | 6.45 | 24.62 | 13.17 | 4.94 | 29.45 |
Cotton | 0.00 | 1.37 | 0.00 | 0.00 | 54.34 | 23.13 | 15.47 | 30.23 | 24.32 | 3.39 | 0.49 |
Peanut | 2.38 | 13.34 | 2.08 | 2.00 | 10.83 | 5.52 | 11.25 | 23.49 | 9.42 | 1.63 | 0.00 |
Rapeseed | 7.38 | 43.69 | 12.06 | 13.74 | 26.05 | 29.58 | 14.36 | 27.57 | 26.62 | 7.44 | 0.36 |
Sesame | 0.00 | 6.11 | 0.00 | 0.00 | 15.65 | 1.78 | 4.40 | 8.07 | 0.04 | 0.02 | 0.00 |
Sugarcane | 0.00 | 5.98 | 204.32 | 17.04 | 3.48 | 12.01 | 8.15 | 0.00 | 0.83 | 0.00 | 0.00 |
Mint | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Vegetables | 21.24 | 225.26 | 42.26 | 27.01 | 49.74 | 49.37 | 25.65 | 0.00 | 256.65 | 32.04 | 7.17 |
Tobacco leaf | 0.00 | 0.95 | 9.76 | 0.79 | 0.79 | 1.24 | 0.25 | 0.21 | 0.00 | 0.02 | 0.00 |
Melon and fruit | 9.66 | 26.59 | 38.71 | 8.72 | 6.67 | 9.22 | 11.39 | 15.10 | 89.04 | 17.20 | 2.00 |
Tea leaf | 0.00 | 0.92 | 46.04 | 0.54 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.00 |
Cultivated crops’ WF (100 million m3) | 135.09 | 618.93 | 481.21 | 141.41 | 477.71 | 482.13 | 383.19 | 424.94 | 739.01 | 173.04 | 39.47 |
Livestock products | |||||||||||
Pork | 40.16 | 181.14 | 166.58 | 59.76 | 168.11 | 156.46 | 88.29 | 114.80 | 125.27 | 78.09 | 11.12 |
Beef | 10.74 | 58.32 | 68.17 | 21.00 | 40.66 | 11.82 | 26.42 | 36.56 | 8.37 | 10.58 | 0.75 |
Lamb | 0.00 | 23.44 | 13.18 | 2.96 | 15.36 | 0.66 | 1.50 | 29.41 | 17.27 | 11.48 | 0.72 |
Poultry | 16.50 | 82.29 | 0.00 | 10.60 | 60.29 | 0.00 | 55.17 | 96.37 | 187.47 | 121.44 | 13.54 |
Honey | 0.53 | 0.95 | 0.11 | 0.05 | 0.55 | 0.00 | 0.36 | 0.49 | 0.13 | 2.41 | 0.00 |
Egg | 21.78 | 72.30 | 21.81 | 6.50 | 146.36 | 0.00 | 50.95 | 124.91 | 212.87 | 53.41 | 6.83 |
Milk | 1.46 | 19.82 | 18.15 | 1.31 | 6.47 | 0.00 | 4.45 | 41.18 | 22.04 | 7.43 | 50.57 |
Cocoon | 0.38 | 3.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.94 | 0.00 |
Livestock products’ WF (100 million m3) | 91.55 | 441.57 | 288.00 | 102.17 | 437.81 | 168.94 | 227.14 | 443.72 | 573.43 | 286.78 | 83.53 |
WF1i (100 million m3) | 226.65 | 1060.50 | 769.21 | 243.58 | 915.52 | 651.07 | 610.33 | 868.66 | 1312.44 | 459.83 | 123.00 |
Source | Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai |
---|---|---|---|---|---|---|---|---|---|---|---|
Industrial output value (100 million USD) | 948.81 | 2013.77 | 730.80 | 481.04 | 1805.04 | 1708.02 | 1137.67 | 1542.91 | 4314.64 | 2735.64 | 1190.52 |
Industrial water consumption (100 million m3) | 36.7 | 44.7 | 24.6 | 27.7 | 90.2 | 87.7 | 61.3 | 91.2 | 238 | 55.7 | 67.2 |
Product WF (100 million m3) | 36.7 | 44.7 | 24.6 | 27.7 | 90.2 | 87.7 | 61.3 | 92.7 | 238 | 55.7 | 66.2 |
Import industrial virtual water (100 million m3) | 42.06 | 30.5 | 24.16 | 26.18 | 46.12 | 37.19 | 49.15 | 39.18 | 46.18 | 40.19 | 34.19 |
Export industrial virtual water (100 million m3) | 37.16 | 29.46 | 19.46 | 24.75 | 42.18 | 38.32 | 46.15 | 51.63 | 76.19 | 64.53 | 59.15 |
Industrial trade water footprint (100 million m3) | 4.9 | 1.04 | 4.7 | 1.43 | 3.94 | −1.13 | 3 | −12.45 | −30.01 | −24.34 | −24.96 |
WF2i (100 million m3) | 41.6 | 45.74 | 29.3 | 29.13 | 94.14 | 86.57 | 64.3 | 78.75 | 207.99 | 31.36 | 42.24 |
Category | Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai |
---|---|---|---|---|---|---|---|---|---|---|---|
Domestic water consumption | 19.10 | 42.50 | 19.50 | 16.60 | 40.70 | 41.80 | 27.40 | 30.90 | 52.80 | 43.80 | 24.40 |
Residential water consumption | 5.06 | 9.45 | 3.18 | 2.52 | 10.62 | 8.58 | 4.26 | 6.13 | 15.99 | 10.90 | 10.24 |
WF3i (100 million m3) | 14.04 | 33.05 | 16.32 | 14.08 | 30.08 | 33.22 | 23.14 | 24.77 | 36.81 | 32.90 | 14.16 |
Category | Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai |
---|---|---|---|---|---|---|---|---|---|---|---|
Residential water consumption | 5.06 | 9.45 | 3.18 | 2.52 | 10.62 | 8.58 | 4.26 | 6.13 | 15.99 | 10.90 | 10.24 |
Urban greening water recharge | 0.90 | 4.20 | 2.0 | 0.70 | 0.60 | 2.70 | 2.10 | 4.20 | 2.70 | 5.20 | 0.80 |
WF4i (100 million m3) | 5.96 | 13.65 | 5.18 | 3.22 | 11.22 | 11.28 | 6.36 | 10.33 | 18.69 | 16.10 | 11.04 |
Appendix B. A Lexicographic Algorithm
References
- Jia, J.S.; Ma, J.; Yang, Z.H.; Zhang, Y.; Xu, Y. Tracing and comparison of international water resources utilization efficiency. China Water Resour. 2012, 5, 13–17. [Google Scholar]
- Worldbank. Databank-World Development Indicators [EB/OL]. Available online: http://databank.worldbank.org/data/indicator/NY.GDP.MKTP.CD/1ff4a498/Popular-Indicators (accessed on 17 February 2019).
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Sun, C.Z.; Liu, Y.Y.; Chen, L.X. The spatial-temporal disparities of water footprints intensity based on Gini coefficient and Theil index in China. Acta Ecol. Sin. 2010, 30, 1312–1321. [Google Scholar]
- Chapagain, A.K.; Orr, S. UK Water Footprint: The Impact of the UK’s Food and Fibre Consumption on Global Water Resources; WWF-UK: Godalming, UK, 2008. [Google Scholar]
- Oel, P.R.V.; Mekonnen, M.M.; Hoekstra, A.Y. The External Water Footprint of the Netherlands: Geographically-Explicit Quantification and Impact Assessment; UNESCO-IHE: Delft, The Netherlands, 2009. [Google Scholar]
- Casolani, N.; Pattara, C.; Liberatore, L. Water and carbon footprint perspective in Italian durum wheat production. Land Use Policy 2016, 58, 394–402. [Google Scholar] [CrossRef]
- Cartone, A.; Casolani, N.; Liberatore, L.; Postiglione, P. Spatial analysis of grey water in Italian cereal crops production. Land Use Policy 2017, 68, 97–106. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Toma, P.; Fanizzi, F.P.; De Donno, A.; Coluccia, B.; Migoni, D.; Bagordo, F.; Serio, F. A grey water footprint assessment of groundwater chemical pollution: Case study in Salento (Southern Italy). Sustainability 2017, 9, 799. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Abbaspour, K.C.; Zehnder, A.J.B. Virtual water trade: An assessment of water use efficiency in the international food trade. Hydrol. Earth Syst. Sci. 2006, 10, 255–276. [Google Scholar] [CrossRef]
- Seekell, D.; D’odorico, P.; Pace, M. Virtual water transfers unlikely to redress inequality in global water use. Environ. Res. Lett. 2011, 6, 024017. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Read. Fuzzy Sets Intell. Syst. 1993, 18, 80–87. [Google Scholar]
- Luss, H.; Smith, D.R. Resource allocation among competing activities: A lexicographic minimax approach. Oper. Res. Lett. 1986, 5, 227–231. [Google Scholar] [CrossRef]
- Wang, L.Z.; Fang, L.P.; Hipel, K.W. Lexicographic minimax approach to fair water allocation problems. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, 10–13 October 2004; Volume 1, pp. 1038–1043. [Google Scholar]
- Betts, L.M.; Brown, J.R.; Luss, H. Minimax resource allocation problems with ordering constraints. Nav. Res. Logist. 1994, 41, 719–738. [Google Scholar] [CrossRef]
- Luss, H. Equitable bandwidth allocation in content distribution networks. Nav. Res. Logist. 2010, 57, 266–278. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.M.; Qiu, L. A lexicographic quota model for allocating initial discharge permits for industrial source points in a lake basin: A case study for Lake Tai in Jiangsu, China. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Seoul, South Korea, 14–17 October 2012; pp. 3075–3080. [Google Scholar]
- Liu, G.; Shi, L.; Li, K. Equitable allocation of blue and green water footprints based on land-use types: A case study of the Yangtze River Economic Belt. Sustainability 2018, 10, 3556. [Google Scholar] [CrossRef]
- Pu, Z.; Wang, H.; Bian, H.; Fu, J. Sustainable lake basin water resource governance in China: The case of Tai Lake. Sustainability 2015, 7, 16422–16434. [Google Scholar] [CrossRef]
- Sušnik, J. Data-driven quantification of the global water-energy-food system. Resour. Conserv. Recycl. 2018, 133, 179–190. [Google Scholar] [CrossRef]
- Yin, C. Environmental efficiency and its determinants in the development of China’s western regions in 2000–2014. Chin. J. Pop. Resour. Environ. 2017, 15, 157–166. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Zhao, F.M.; H, W.X.; Wan, D.H.; Ma, Z.Y. Virtual water analysis of main crops in Kunming based on Cropwat. J. Anhui Agric. Sci. 2017, 45, 218–220. [Google Scholar]
- De Miguel, Á.; Kallache, M.; García-Calvo, E. The water footprint of agriculture in Duero River Basin. Sustainability 2015, 7, 6759–6780. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. The Water Footprints of Nations; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Sun, S.K.; Jin, J.M. Spatiotemporal variation in water footprint of grain production in China. Front. Agric. Sci. Eng. 2015, 2, 186–193. [Google Scholar] [CrossRef]
- Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the urban water footprint of food consumption: A case study of Xiamen city. Sustainability 2017, 9, 135. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products; UNESCO-IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Chen, J.X.; Zhang, S.F.; Hua, D.; Long, A.H.; Chen, B. A study on water resources guarantee in Beijing city based on water footprint evaluation. Resour. Sci. 2010, 32, 528–534. [Google Scholar]
- Zhao, X.; Chen, B.; Yang, Z. National water footprint in an input–output framework—A case study of China 2002. Ecol. Modell. 2009, 220, 245–253. [Google Scholar] [CrossRef]
- Hubacek, K.; Guan, D.; Barrett, J.; Wiedmann, T. Environmental implications of urbanization and lifestyle change in China: Ecological and water footprints. J. Clean. Prod. 2009, 17, 1241–1248. [Google Scholar] [CrossRef]
- Pan, W.J.; Cao, W.Z.; Wang, F.F.; Chen, J.S.; Cao, D. Evaluation of water resource utilization in the Jiulong River basin based on water footprint theory. Resour. Sci. 2012, 34, 1905–1912. [Google Scholar]
- Zhao, J.M.; Chen, C.H.; Li, J. Impacts of soil and water conservation on water resources carrying capacity in Yellow River basin. J. Hydraul. Eng. 2010, 41, 1079–1086. [Google Scholar]
- Luss, H. On equitable resource allocation problems: A lexicographic minimax approach. INFORMS Inst. Oper. Res. 1999, 47, 361–378. [Google Scholar] [CrossRef]
- Pi, J.C. Leaders, followers and collective actions in communal cooperation: An extension based on the fairness-compatible constraint. China Econ. Q. 2007, 6, 597–606. [Google Scholar]
- Zhao, X.; Yang, H.; Yang, Z.; Chen, B.; Qin, Y. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. Environ. Sci. Technol. 2010, 44, 9150–9156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, K.; Yang, S.; Yu, Y. An input-output approach to evaluate the water footprint and virtual water trade of Beijing, China. J. Clean. Prod. 2013, 42, 172–179. [Google Scholar] [CrossRef]
- Yao, Z.; Jaruphongsa, W.; Tan, V.; Hui, C.F. Multi-source facility location-allocation and inventory problem. Eur. J. Oper. Res. 2010, 207, 750–762. [Google Scholar] [CrossRef]
- Duarte, A.E.; Sarache, W.A.; Costa, Y.J. A facility-location model for biofuel plants: Applications in the Colombian context. Energy 2014, 72, 476–483. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2014 [EB/OL]. Available online: http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.htm (accessed on 17 February 2019).
- Lin, Y.F.; Li, Y.J. The relationship among comparative advantage, competitive advantage and economic growth in developing countries. Manag. World 2003, 7, 21–28. [Google Scholar]
- Li, X.; Xin, Z.; Wu, J. The significance of the comparative advantages in factor endowment to the industrial structure. In Proceedings of the International Conference on Service Sciences, Hangzhou, China, 13–14 May 2010. [Google Scholar]
Administrative Units | Total GDP (108 USD) | Primary Industry GDP (108 USD) | Secondary Industry GDP (108 USD) | Tertiary Industry GDP (108 USD) | Available Water Resources (billion m3) | Residential Water Consumption (billion m3) |
---|---|---|---|---|---|---|
Chongqing | 1876.99 | 150.78 | 948.81 | 777.39 | 47.43 | 0.51 |
Sichuan | 3894.47 | 508.02 | 2013.77 | 1372.68 | 247.03 | 0.95 |
Yunnan | 1738.21 | 281.08 | 730.80 | 726.34 | 170.67 | 0.32 |
Guizhou | 1187.41 | 152.61 | 481.04 | 553.76 | 75.94 | 0.25 |
Hubei | 3658.34 | 459.46 | 1805.04 | 1393.84 | 79.01 | 1.06 |
Hunan | 3633.60 | 459.62 | 1708.02 | 1465.96 | 158.20 | 0.86 |
Jiangxi | 2126.40 | 242.69 | 1137.67 | 746.04 | 142.40 | 0.43 |
Anhui | 2823.47 | 348.22 | 1542.91 | 932.34 | 58.56 | 0.61 |
Jiangsu | 8773.69 | 540.71 | 4314.64 | 3918.33 | 28.35 | 1.60 |
Zhejiang | 5571.41 | 264.66 | 2735.64 | 2571.11 | 93.13 | 1.09 |
Shanghai | 3203.59 | 19.17 | 1190.52 | 1993.90 | 2.80 | 1.02 |
Iteration Process | A1 (billion m3) | (billion m3) | T1 (billion m3) | R1 (billion m3) | K1 | AVG1 (m3/USD) |
---|---|---|---|---|---|---|
1 | 590 | −21.50 | 134.08 | 9226.29 | 0.0145 | 1.7216 |
2 | 600 | −8.10 | 124.08 | 9226.29 | 0.0134 | 1.7508 |
3 | 610 | −2.92 | 114.08 | 9226.29 | 0.0124 | 1.7800 |
4 | 620 | 2.28 | 104.08 | 9226.29 | 0.0113 | 1.8092 |
Optimized value | 615.66 | 0 | 108.42 | 9226.29 | 0.0118 | 1.7965 |
Iteration Process | A2 (billion m3) | (billion m3) | T2 (billion m3) | R2 (billion m3) | K2 | AVG2 (m3/USD) |
---|---|---|---|---|---|---|
1 | 57 | −1.27 | 18.11 | 879.94 | 0.0206 | 0.0306 |
2 | 58 | −0.85 | 17.11 | 879.94 | 0.0195 | 0.0312 |
3 | 59 | −0.40 | 16.11 | 879.94 | 0.0184 | 0.0317 |
4 | 61 | 0.91 | 14.11 | 879.94 | 0.0161 | 0.0328 |
Optimized value | 59.77 | 0 | 15.34 | 879.74 | 0.0174 | 0.0321 |
Iteration Process | A3 (billion m3) | (billion m3) | T3 (billion m3) | R3 (billion m3) | K3 | AVG3 (m3/USD) |
---|---|---|---|---|---|---|
1 | 17 | −0.74 | 10.26 | 363.81 | 0.02819 | 0.0103 |
2 | 18 | −0.60 | 9.26 | 363.81 | 0.02544 | 0.0109 |
3 | 19 | −0.37 | 8.26 | 363.81 | 0.02269 | 0.0115 |
4 | 20 | 0.02 | 7.26 | 363.81 | 0.01994 | 0.0122 |
Optimized value | 19.95 | 0 | 7.30 | 363.81 | 0.02007 | 0.0121 |
Region | Administrative Units | Original Total Water Footprints | Optimized Total Water Footprints | Total Water Footprints Reduction | Reduction Rate of Total Water Footprints | ||
---|---|---|---|---|---|---|---|
Provincial | Regional | YREB’s | |||||
Upstream | Chongqing | 28.83 | 21.20 | 7.63 | 26.46% | 21.93% | 20.03% |
Sichuan | 115.29 | 105.12 | 10.17 | 8.82% | |||
Yunnan | 82.00 | 63.14 | 18.86 | 23.00% | |||
Guizhou | 29.00 | 20.47 | 8.53 | 29.42% | |||
Midstream | Hubei | 105.10 | 94.23 | 10.87 | 10.34% | 13.18% | |
Hunan | 78.21 | 69.85 | 8.36 | 10.69% | |||
Jiangxi | 70.41 | 57.37 | 13.04 | 18.53% | |||
Downstream | Anhui | 98.25 | 82.37 | 15.88 | 16.16% | 23.27% | |
Jiangsu | 157.59 | 136.90 | 20.69 | 13.13% | |||
Zhejiang | 54.02 | 46.48 | 7.54 | 13.96% | |||
Shanghai | 19.04 | 9.55 | 9.49 | 49.83% |
Administrative Units | Original Value of the Primary Industry’s Water Footprints | Original Value of the Secondary Industry’s Water Footprints | Original Value of the Tertiary Industry’s Water Footprints | Optimized Value of the Primary Industry’s Water Footprints | Optimized Value of the Secondary Industry’s Water Footprints | Optimized Value of the Tertiary Industry’s Water Footprints |
---|---|---|---|---|---|---|
Chongqing | 22.67 | 4.16 | 1.40 | 16.61 | 3.05 | 0.94 |
Sichuan | 106.05 | 4.57 | 3.30 | 97.64 | 3.84 | 2.27 |
Yunnan | 76.92 | 2.93 | 1.63 | 59.39 | 2.35 | 0.89 |
Guizhou | 24.36 | 2.91 | 1.41 | 17.93 | 1.55 | 0.67 |
Hubei | 91.55 | 9.41 | 3.01 | 83.53 | 7.29 | 2.30 |
Hunan | 65.11 | 8.66 | 3.32 | 59.40 | 6.89 | 2.43 |
Jiangxi | 61.03 | 6.43 | 2.31 | 50.91 | 4.59 | 1.24 |
Anhui | 86.87 | 7.88 | 2.48 | 73.57 | 6.22 | 1.55 |
Jiangsu | 131.24 | 20.80 | 3.68 | 114.25 | 17.42 | 3.37 |
Zhejiang | 45.98 | 3.14 | 3.29 | 38.99 | 2.76 | 3.12 |
Shanghai | 12.30 | 4.22 | 1.42 | 3.44 | 3.82 | 1.18 |
Region | Administrative Units | Original Value of overall IOWF (USD/m3) | Optimized Value of overall IOWF (USD/m3) | Increase Ratio of overall IOWF | ||
---|---|---|---|---|---|---|
Provincial | Regional | YREB’s | ||||
Upstream | Chongqing | 6.51 | 8.85 | 35.98% | 29.30% | 28.49% |
Sichuan | 3.38 | 3.70 | 9.68% | |||
Yunnan | 2.12 | 2.75 | 29.87% | |||
Guizhou | 4.09 | 5.80 | 41.68% | |||
Midstream | Hubei | 3.48 | 3.88 | 11.53% | 15.41% | |
Hunan | 4.65 | 5.20 | 11.97% | |||
Jiangxi | 3.02 | 3.71 | 22.74% | |||
Downstream | Anhui | 2.87 | 3.43 | 19.28% | 37.49% | |
Jiangsu | 5.57 | 6.41 | 15.12% | |||
Zhejiang | 10.31 | 11.99 | 16.22% | |||
Shanghai | 16.82 | 33.53 | 99.34% |
Variable | Original Value of the Total Water Footprint | Optimized Value of the Total Water Footprint | |
---|---|---|---|
Original value of the total water footprint | Pearson Correlation | 1 | 0.996 ** |
Sig. (2-tailed) | 0.000 | ||
N | 11 | 11 | |
Optimized value of the total water footprint | Pearson Correlation | 0.996 ** | 1 |
Sig. (2-tailed) | 0.000 | ||
N | 11 | 11 |
Variable | Original Value of the Overall Lowfs | Optimized Value of the Overall Lowfs | |
---|---|---|---|
Original value of the overall IOWFs | Pearson Correlation | 1 | 0.969 ** |
Sig. (2-tailed) | 0.000 | ||
N | 11 | 11 | |
Optimized value of the overall IOWFs | Pearson Correlation | 0.969 ** | 1 |
Sig. (2-tailed) | 0.000 | ||
N | 11 | 11 |
Region | Original Value of the Primary Industry’s IOWF | Original Value of the Secondary Industry’s IOWF | Original Value of the Tertiary Industry’s IOWF | Optimized Value of the Primary Industry’s IOWF | Optimized Value of the Secondary Industry’s IOWF | Optimized Value of the Tertiary Industry’s IOWF |
---|---|---|---|---|---|---|
Upstream | 0.53 | 27.07 | 45.19 | 0.69 | 36.47 | 76.72 |
Midstream | 0.54 | 18.87 | 40.90 | 0.60 | 24.77 | 60.48 |
Downstream | 0.39 | 38.94 | 90.76 | 0.55 | 44.92 | 106.95 |
Average | 0.48 | 29.15 | 60.59 | 0.61 | 36.35 | 83.28 |
Region | Industry | Terrain | Transportation | Climate |
---|---|---|---|---|
Upstream | Primary industry | − | − | + |
Secondary industry | + | − | + | |
Tertiary industry | + | − | + | |
Midstream | Primary industry | + | + | − |
Secondary industry | + | − | + | |
Tertiary industry | + | − | + | |
Downstream | Primary industry | + | + | − |
Secondary industry | + | + | + | |
Tertiary industry | + | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, W.; Li, K.W. Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2019, 16, 743. https://doi.org/10.3390/ijerph16050743
Liu G, Wang W, Li KW. Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China. International Journal of Environmental Research and Public Health. 2019; 16(5):743. https://doi.org/10.3390/ijerph16050743
Chicago/Turabian StyleLiu, Gang, Weiqian Wang, and Kevin W. Li. 2019. "Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China" International Journal of Environmental Research and Public Health 16, no. 5: 743. https://doi.org/10.3390/ijerph16050743
APA StyleLiu, G., Wang, W., & Li, K. W. (2019). Water Footprint Allocation under Equity and Efficiency Considerations: A Case Study of the Yangtze River Economic Belt in China. International Journal of Environmental Research and Public Health, 16(5), 743. https://doi.org/10.3390/ijerph16050743