Establishment and Application of an Evaluation Model for Orchid Island Sustainable Tourism Development
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Description of the Study Area
3.2. Construction of Preference Utility Model for Island Tourism
3.2.1. Multi-Attribute WTP Valuation Model
3.2.2. Introduction to Multiple Attributes and Levels of Orchid Island Tourism
- Tourist numbers should be controlled with the current level of 1000 tourists per day as the upper limit. Further discussions with experts resulted in a recommendation of limiting numbers to no more than 600 tourists per day as a principle;
- Professional tour guides should be provided to offer guided tours;
- Recreational facilities with minimal environmental impact should be planned;
- Activities that enhance the experience of local characteristics/culture, such as “ecotourism,” “tribal ceremonies,” and “cave and underground dwellings”, should be included in the scope of experience activities; and
- Findings from the expert interviews should be used to set the evaluation levels for the ecosystem conservation trust fund. This study defined the various attributes and their levels for Orchid Island tourism, as shown in Table 1 below:
3.3. Introduction to Preference Selection Combinations for Choice Sets for the Orchid Island Tourism Site
3.4. Survey Design
4. Results
4.1. Results of the Analysis of Factors Influencing Multiple Attribute Preferences for the Orchid Island Tourism Site
4.2. Examination and Analysis of Benefits of Island Tourism Management Programs
4.3. Examination of Willingness to Pay and Market Segmentation
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Buzinde, C.N.; Manuel-Navarrete, D.; Yoo, E.E.; Morais, D. Tourists’ perceptions in a climate of change: Eroding destinations. Ann. Tour. Res. 2010, 37, 333–354. [Google Scholar] [CrossRef]
- Jopp, R.; DeLacy, T.; Mair, J. Developing a framework for regional destination adaptation to climate change. Curr. Issues Tour. 2010, 13, 591–605. [Google Scholar] [CrossRef]
- Scott, D.; Gössling, S.; Hall, C.M. International tourism and climate change. Wires Clim. Chang. 2012, 3, 213–232. [Google Scholar] [CrossRef]
- Arachchi, R.S.S.W.; Yajid, M.S.A.; Khatibi, A. Ecotourism practices in Sri Lankan eco resorts: A supplier perspective analysis. Tour. Hosp. Manag. 2015, 3, 169–180. [Google Scholar] [CrossRef]
- Chen, C.C.; Lee, C.H. Economic benefits of improving the quality of cultural heritage sites. J. Econ. Manag. 2017, 13, 241–264. [Google Scholar]
- Volo, S. Eudaimonic well-being of islanders: Does tourism contribute? The case of the aeolian Archipelago. J. Destin. Mark. Manag. 2017, 6, 465–476. [Google Scholar] [CrossRef]
- Dahlin, K.M.; Asner, G.P.; Field, C.B. Linking vegetation patterns to environmental gradients and human impacts in a Mediterranean-type island ecosystem. Landsc. Ecol. 2014, 29, 1571–1585. [Google Scholar] [CrossRef]
- Benitez-Capistros, F.; Hugé, J.; Koedam, N. Environmental impacts on the Galapagos Islands: Identification of interactions, perceptions and steps ahead. Ecol. Ind. 2014, 38, 113–123. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Wang, Y.; Guo, Z.; Wang, E. Evaluation on island ecological vulnerability and its spatial heterogeneity. Mar. Pollut. Bull. 2017, 125, 216–241. [Google Scholar] [CrossRef] [PubMed]
- Hannak, J.S.; Kompatscher, S.; Stachowitsch, M.; Herler, J. Snorkelling and trampling in shallow-water fringing reefs: Risk assessment and proposed management strategy. J. Environ. Manag. 2011, 92, 2723–2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yang, Z.; Yu, X. Measurement and evaluation of interactions in complex urban ecosystem. Ecol. Model. 2006, 96, 77–89. [Google Scholar] [CrossRef]
- Bertram, C.; Larondelle, N. Going to the woods is going home: Recreational benefits of a larger urban forest Site—A travel cost analysis for Berlin, Germany. Ecol. Econ. 2017, 132, 255–263. [Google Scholar] [CrossRef]
- He, J.; Huang, A.; Xuc, L. Spatial heterogeneity and transboundary pollution: A contingent valuation (CV) study on the Xijiang River drainage basin in south China. China Econ. Rev. 2015, 36, 101–130. [Google Scholar] [CrossRef]
- Perez-Verdin, G.; Sanjurjo-Rivera, E.; Galicia, L.; Hernandez-Diaz, J.C.; Hernandez-Trejo, V.; Marquez-Linares, M.A. Economic valuation of ecosystem services in Mexico: Current status and trends. Ecosyst. Serv. 2016, 21, 6–19. [Google Scholar] [CrossRef]
- Rudd, M. National values for reginal aquatic species at risk in Canada. Endanger. Species Res. 2009, 6, 239–249. [Google Scholar] [CrossRef]
- Liekens, I.; Schaafsma, M.; De Nocker, L.; Broekx, S.; Staes, J.; Aertsens, J.; Brouwer, R. Developing a value function for nature development and land use policy in Flanders, Belgium. Land Use Policy 2013, 30, 549–559. [Google Scholar] [CrossRef]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L.; Olar, M.; West, G.E.; Cantin, G. Analysis of the economic benefits associated with the recovery of threatened marine mammal species in the Canadian St. Lawrence Estuary. Mar. Policy 2012, 36, 189–197. [Google Scholar] [CrossRef]
- Lee, D.E.; Du Preez, M.D. Determining visitor preferences for rhinoceros conservation management at private, ecotourism game reserves in the Eastern Cape Province, South Africa: A choice modelling experiment. Ecol. Econ. 2016, 130, 106–116. [Google Scholar] [CrossRef]
- Lew, D.K.; Wallmo, K. Temporal stability of stated preferences for endangered species protection from choice experiments. Ecol. Econ. 2017, 131, 87–97. [Google Scholar] [CrossRef]
- Dias, V.; Belcher, K. Value and provision of ecosystem services from prairie wetlands: A choice experiment approach. Ecosyst. Serv. 2015, 15, 35–44. [Google Scholar] [CrossRef]
- Franzén, F.; Dinnétz, P.; Hammer, M. Factors affecting farmers’ willingness to participate in eutrophication mitigation—A case study of preferences for wetland creation in Sweden. Ecol. Econ. 2016, 130, 8–15. [Google Scholar] [CrossRef]
- Guimarães, M.H.; Madureira, L.; Nunes, L.C.; Santos, J.L.; Sousa, C.; Boski, T.; Dentinho, T. Using Choice Modeling to estimate the effects of environmental improvements on local development: When the purpose modifies the tool. Ecol. Econ. 2014, 108, 79–90. [Google Scholar] [CrossRef]
- Cerda, C.; Ponce, A.; Zappi, M. Using choice experiments to understand public demand for the conservation of nature: A case study in a protected area of Chile. J. Nat. Conserv. 2013, 21, 143–153. [Google Scholar] [CrossRef]
- Chaminuka, P.; Groeneveld, R.A.; Selomane, A.O.; Van Ierland, E.C. Tourist preferences for ecotourism in rural communities adjacent to Kruger National Park: A choice experiment approach. Tour. Manag. 2012, 33, 168–176. [Google Scholar] [CrossRef]
- Juutinen, A.; Mitani, Y.; Mäntymaa, E.; Shoji, Y.; Siikamäki, P.; Svento, R. Combining ecological and recreational aspects in national park management: A choice experiment application. Ecol. Econ. 2011, 70, 1231–1239. [Google Scholar] [CrossRef]
- Romão, J.; Neuts, B.; Nijkamp, P.; Shikida, A. Determinants of trip choice, satisfaction and loyalty in an eco-tourism destination: A modelling study on the Shiretoko Peninsula, Japan. Ecol. Econ. 2014, 107, 195–205. [Google Scholar] [CrossRef]
- Torres, C.; Faccioli, M.; Riera Font, A.R. Waiting or acting now? The effect on willingness-to-pay of delivering inherent uncertainty information in choice experiments. Ecol. Econ. 2017, 131, 231–240. [Google Scholar] [CrossRef]
- Cazabon-Mannette, M.; Schuhmann, P.W.; Hailey, A.; Horrocks, J. Estimates of the non-market value of sea turtles in Tobago using stated preference techniques. J. Environ. Manag. 2017, 192, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Oleson, K.L.L. Beach Recreationalists’ Willingness to Pay and Economic Implications of Coastal Water Quality Problems in Hawaii. Ecol. Econ. 2017, 136, 41–52. [Google Scholar] [CrossRef]
- Remoundou, K.; Diaz-Simal, P.; Koundouri, P.; Rulleau, B. Valuing climate change mitigation: A choice experiment on a coastal and marine ecosystem. Ecosyst. Serv. 2015, 11, 87–94. [Google Scholar] [CrossRef]
- Schuhmann, P.W.; Bass, B.E.; Casey, J.F.; Gill, D.A. Visitor preferences and willingness to pay for coastal attributes in Barbados. Ocean Coast. Manag. 2016, 134, 240–250. [Google Scholar] [CrossRef]
- Mejía, C.V.; Brandt, S. Managing tourism in the Galapagos Islands through price incentives: A choice experiment approach. Ecol. Econ. 2015, 117, 1–11. [Google Scholar] [CrossRef]
- Xuan, B.B.; Sandorf, E.D.; Aanesen, M. Informing management strategies for a reserve: Results from a discrete choice experiment survey. Ocean Coast. Manag. 2017, 145, 35–43. [Google Scholar] [CrossRef]
- Ek, K.; Persson, L. Wind farms-where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 2014, 105, 193–203. [Google Scholar] [CrossRef]
- León, C.J.; de León, J.; Araña, J.E.; González, M.M. Tourists’ preferences for congestion, residents’ welfare and the ecosystems in a national park. Ecol. Econ. 2015, 118, 21–29. [Google Scholar] [CrossRef]
- Jaung, W.; Putzel, L.; Bull, G.Q.; Guariguata, M.R.; Sumaila, U.R. Estimating demand for certification of forest ecosystem services: A choice experiment with Forest Stewardship Council certificate holders. Ecosyst. Serv. 2016, 22, 193–201. [Google Scholar] [CrossRef]
- Matthews, Y.; Scarpa, R.; Marsh, D. Using virtual environments to improve the realism of choice experiments: A case study about coastal erosion management. J. Environ. Econ. Manag. 2017, 81, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K.L.L.; Barnes, M.; Brander, L.M.; Oliver, T.A.; van Beek, I.; Zafindrasilivonona, B.; van Beukering, P. Cultural bequest values for ecosystem service flows among indigenous fishers: A discrete choice experiment validated with mixed methods. Ecol. Econ. 2015, 114, 104–116. [Google Scholar] [CrossRef]
- Sangha, K.K.; Russell-Smith, J.; Morrison, S.C.; Costanza, R.; Edwards, A.C. Challenges for valuing ecosystem services from an Indigenous estate in northern Australia. Ecosyst. Serv. 2017, 25, 167–178. [Google Scholar] [CrossRef]
- Park, C.; Song, H. Visitors’ Perceived Place Value and the Willingness to Pay in an Urban Lake Park. Int. J. Environ. Res. Public Health 2018, 15, 2518. [Google Scholar] [CrossRef] [PubMed]
- Fujino, M.; Kuriyama, K.; Yoshida, K. An evaluation of the natural environment ecosystem preservation policies in Japan. J. For. Econ. 2017, 29, 62–67. [Google Scholar] [CrossRef]
- Lyu, S.O. Which accessible travel products are people with disabilities willing to pay more? A choice experiment. Tour. Manag. 2017, 59, 404–412. [Google Scholar] [CrossRef]
- Randrianarison, H.; Wätzold, F. Are buyers of forest ecosystem services willing to consider distributional impacts of payments to local suppliers? Results from a choice experiment in Antananarivo, Madagascar. Environ. Conserv. 2017, 44, 74–81. [Google Scholar] [CrossRef]
- Cranford, M.; Mourato, S. Credit-based payments for ecosystem services: Evidence from a choice experiment in Ecuador. World Dev. 2014, 64, 503–520. [Google Scholar] [CrossRef]
- Halkos, G.; Matsiori, S. Environmental attitudes and preferences for coastal zone improvements. Econ. Anal. Policy 2018, 58, 153–166. [Google Scholar] [CrossRef]
- Tonin, S. Economic value of marine biodiversity improvement in coralligenous habitats. Ecol. Indic. 2018, 85, 1121–1132. [Google Scholar] [CrossRef]
- Yu, C.P.; Huang, Y.C.; Yeh, P.F.; Chao, P.H. Residents’ attitudes toward island tourism development in Taiwan. Isl. Stud. J. 2017, 12, 159–176. [Google Scholar] [CrossRef]
- Shoyama, K.; Managi, S.; Yamagata, Y. Public preferences for biodiversity conservation and climate-change mitigation: A choice experiment using ecosystem services indicators. Land Use Policy 2013, 34, 282–293. [Google Scholar] [CrossRef]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuation? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Hearne, R.; Santos, A. Tourists and locals preferences toward ecotourism development in the Maya Biosphere Reserve, Guatemala. Environ. Dev. Sustain. 2005, 7, 303–318. [Google Scholar] [CrossRef]
- Deshazo, J.R.; Fermo, G. Designing choice sets for stated preference methods: The effects of complexity on choice consistency. J. Environ. Econ. Manag. 2002, 44, 123–143. [Google Scholar] [CrossRef]
Attributes | Levels | Variable | Number of Levels |
---|---|---|---|
Limit on the number of visitors | 1. Maintaining the status quo: 1000 people per day | LIM± | 3 |
2. 800 people per day (20% reduction) | LIM− | ||
3. 600 people per day (40% reduction) | LIM−− | ||
Tour guides | 1. Maintaining the status quo: professional tour guides not available | GUI± | 2 |
2. Introducing a guided tour facility | GUI+ | ||
Recreation and facilities | 1. Maintaining the status quo | REC± | 2 |
2. Improving the quality of the recreation and facilities | REC+ | ||
Experience activities | 1. Maintaining the status quo: snorkeling, whale watching, night observation of flying fish | EXP± | 4 |
2. Addition of any one of the following activities: experiencing ecotourism, tribal ceremonies, or cave and underground dwelling experience | EXP+ | ||
3. Addition of any two of the following three activities: experiencing ecotourism, tribal ceremonies, or cave and underground dwelling experience | EXP+ | ||
4. Addition of the following three activities: experiencing ecotourism, tribal ceremonies and or cave and underground dwelling experience | EXP+++ | ||
Ecosystem conservation trust fund | 1. Maintaining the status quo: entrance free | FUND | 6 |
2. TWD 200 per entry per person | |||
3. TWD 400 per entry per person | |||
4. TWD 600 per entry per person | |||
5. TWD 800 per entry per person | |||
6. TWD 1000 per entry per person |
Program Attributes | Current Program | Program 1 | Program 2 | |
---|---|---|---|---|
Limit on the number of visitors | Maintain The current situation | 220% reduction | 40% reduction | Uncertain |
Tour guide | Not available | Available | Not available | |
Recreation and facilities | Maintaining the status quo | Improved quality | Improved quality | |
Experience activities | Maintaining the status quo | Three additional activities | One additional activity | |
Ecosystem conservation trust fund (TWD/entrance/person) | Free | TWD 600 | TWD 1000 | |
Please check (1 of 4) | □ Suggestions: | □ Suggestions: | □ Suggestions: | □ Suggestions: |
Conditional Logit Model | Random Parameter Logit Model | |||||
---|---|---|---|---|---|---|
Attributes and Levels | Coefficient | t-Value | Coefficient | t-Value | S.E. | t-Value |
Constant | −0.02 | −0.05 | −1.34 | −3.73 c | 3.56 | 8.46 c |
LIM−− | 0.08 | 1.12 | 0.11 | 0.79 | 0.49 | 1.77 a |
LIM−− | 0.15 | 2.33 b | 0.18 | 1.24 | 1.24 | 6.11 c |
GUI+ | 0.12 | 2.71 c | 0.12 | 1.23 | 0.89 | 4.66 c |
REC+ | 0.28 | 6.44 c | 0.51 | 5.65 c | 0.48 | 1.60 |
EXP+ | −0.02 | −0.17 | −0.05 | −0.30 | 0.62 | 1.76 a |
EXP++ | −0.10 | −1.31 | −0.33 | −2.12 b | 1.16 | 4.28 c |
EXP+++ | 0.12 | 1.54 | 0.26 | 1.78 a | 0.80 | 2.89 c |
FUND | −0.01 | −7.21 c | −0.01 | −6.69 c | ||
N of choice sets | 1430 | 1430 | ||||
Log-likelihood ratio | −1476.54 | −1254.62 | ||||
X2(0.01,9) = 21.7 | 614.63 c |
Attributes and Levels | WTP (TWD/Entrance/Person) | Current Program (TWD/Entrance/Person) | Best Program (TWD/Entrance/Person) | Worst Program (TWD/Entrance/Person) |
---|---|---|---|---|
LIM± | −402.72 | −402.72 | −402.72 | |
LIM− | 130.26 | |||
LIM−− | 268.65 | 268.65 | ||
GUI± | −213.62 | −213.62 | −213.62 | |
GUI+ | 213.62 | 213.62 | ||
REC± | −518.34 | −518.34 | −518.34 | |
REC+ | 518.34 | 518.34 | ||
EXP± | −0.49 | −0.49 | ||
EXP+ | −19.42 | |||
EXP++ | −180.32 | −180.32 | ||
EXP+++ | 201.43 | 201.43 | ||
Total benefit | −1135.17 | 1202.04 | −1315.21 |
N | Current | LIM− | LIM−− | GUI+ | REC+ | EXP+ | EXP++ | EXP+++ | |
---|---|---|---|---|---|---|---|---|---|
Men | 202 | −1226 a | 109 | 190 | 61 b | 541 | −46 | −392 | 254 |
Women | 183 | −1738 | 102 | 191 | 164 | 563 | −41 | −348 | 263 |
Age > 30 | 256 | −1602 | 103 | 196 | 162 a | 542 | −34 | −312 b | 265 |
Age ≤ 30 | 129 | −1388 | 109 | 187 | 68 | 565 | −52 | −431 | 254 |
Tertiary | 288 | −1486 | 127 a | 186 | 74 | 534 | −56 | −426 | 226 |
Secondary & primary | 97 | −1503 | 101 | 195 | 127 | 561 | −40 | −352 | 271 |
Income > TWD 30,000 | 281 | −1491 | 109 | 164 | 96 | 544 | −42 | −387 | 261 |
Income ≤ TWD 30,000 | 104 | −1504 | 105 | 211 | 127 | 562 | −45 | −361 | 262 |
Cost > TWD 10,000 | 198 | −1786 b | 117 | 224 | 116 | 583 c | −28 a | −350 | 280 |
Cost ≤TWD 10,000 | 187 | −1210 | 96 | 163 | 116 | 527 | −62 | −391 | 241 |
WTP Ecosystem conservation trust fund | 316 | −1929 c | 113 a | 248 c | 129 | 561 | −26 c | −344 a | 289 c |
Not WTP Ecosystem conservation trust fund | 69 | 138 | 86 | 23 | 72 | 539 | −102 | −453 | 167 |
Parameters of Attributes and Levels | Coefficient | t-Value | WTP |
---|---|---|---|
Category 1: Respondents with Strong Preference | |||
Constant | −0.70 | −3.11 c | - |
LIM− | −0.03 | −0.46 | - |
LIM−− | 0.26 | 3.51 c | 542.00 |
GUI+ | 0.04 | 1.05 | - |
REC+ | 0.25 | 5.26 c | 532.61 |
EXP+ | −0.07 | −0.93 | - |
EXP++ | −0.15 | −1.76 a | −321.36 |
EXP+++ | 0.18 | 2.27 b | 400.36 |
FUND | −0.00 | −5.69 c | |
Category 2: Respondents with a single preference | |||
Constant | 3.58 | 1.21 | - |
LIM− | 0.76 | 1.24 | - |
LIM−− | −0.93 | −1.12 | - |
GUI+ | 0.80 | 1.16 | - |
REC+ | 0.77 | 1.67 a | 395.00 |
EXP+ | 0.76 | 0.76 | - |
EXP++ | 0.94 | 0.97 | - |
EXP+++ | −1.35 | −0.83 | - |
FUND | −0.00 | −1.67 a | |
Category parameters: Category 1 | |||
Constant | 0.41 | 0.69 | |
Men | −0.58 | −1.82 a | |
Age >30 | 0.16 | 0.48 | |
Tertiary | 0.65 | 1.66 a | |
Income > TWD 30,000,000 | −0.21 | −0.65 | |
Visited Orchid Island before | −0.32 | −0.83 | |
Cost > TWD 2639 | 0.61 | 1.76 a | |
WTP Ecosystem conservation trust fund | 2.54 | 4.53 c | |
N of choice sets | 1430 | ||
Log-likelihood ratio | −1563.47 | ||
X2(0.01,30) = 50.89 | 276.00 b |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-S. Establishment and Application of an Evaluation Model for Orchid Island Sustainable Tourism Development. Int. J. Environ. Res. Public Health 2019, 16, 755. https://doi.org/10.3390/ijerph16050755
Chen H-S. Establishment and Application of an Evaluation Model for Orchid Island Sustainable Tourism Development. International Journal of Environmental Research and Public Health. 2019; 16(5):755. https://doi.org/10.3390/ijerph16050755
Chicago/Turabian StyleChen, Han-Shen. 2019. "Establishment and Application of an Evaluation Model for Orchid Island Sustainable Tourism Development" International Journal of Environmental Research and Public Health 16, no. 5: 755. https://doi.org/10.3390/ijerph16050755
APA StyleChen, H. -S. (2019). Establishment and Application of an Evaluation Model for Orchid Island Sustainable Tourism Development. International Journal of Environmental Research and Public Health, 16(5), 755. https://doi.org/10.3390/ijerph16050755