Environmental, Ecological, and Economic Benefits of Biofuel Production Using a Constructed Wetland: A Case Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wetland Location and Design
2.2. Cultivation of Plants in CW for Biofuel Production
2.3. Life Cycle Assessment (LCA)
2.3.1. Life Cycle Assessment of Energy Balance
2.3.2. Life Cycle Assessment of GHG emission
2.4. Statistical Analysis
3. Results and Discussion
3.1. Biomass Production by the CW
3.2. Energy Balances of the CW in Producing Biofuel
3.3. Life-Cycle Environmental Effects of the CW
3.4. Replacing the Wastewater Treatment Approach by the CW
3.5. Economic and Social Feasibility of Developing a CW
4. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, B.J.; Ju, X.T.; Wu, Y.Y.; Erisman, J.W.; Bleeker, A.; Reis, S.; Sutton, M.A.; Lam, S.K.; Smith, P.; Oenema, O.; et al. Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environ. Chang. 2018, 48, 56–66. [Google Scholar] [CrossRef]
- Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 10, 11206–11210. [Google Scholar] [CrossRef] [PubMed]
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiao, B.; Ochieng, R.M.; Yang, J. Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China. Renew. Sustain. Energy Rev. 2009, 13, 479–485. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; Williams, R. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.C. Plants for constructed wetland treatment systems—A comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. 1996, 7, 59–83. [Google Scholar] [CrossRef]
- Ciria, M.P.; Solano, M.L.; Soriano, P. Role of macrophyte Typha Latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosyst. Eng. 2005, 92, 535–544. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Liu, D.; Ge, Y.; Chang, J.; Peng, C.H.; Gu, B.H.; Chan, G.Y.S.; Wu, X.F. Constructed wetlands in China: Recent developments and future challenges. Front. Ecol. Environ. 2009, 7, 261–268. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Gersberg, R.M.; Keat, T.S. Constructed wetlands in China. Ecol. Eng. 2009, 35, 1367–1378. [Google Scholar] [CrossRef]
- Zhu, S.X.; Ge, H.L.; Ge, Y.; Cao, Q.J.; Liu, D.; Chang, J.; Zhang, C.B.; Gu, B.J.; Chang, S.X. Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland. Ecol. Eng. 2010, 36, 1307–1313. [Google Scholar] [CrossRef]
- Zhang, C.B.; Wang, J.; Liu, L.W.; Zhu, S.X.; Liu, D.; Chang, S.X.; Chang, J.; Ge, Y. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 2010, 101, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Liu, D.; Cao, H.Q.; Chang, S.X.; Wang, X.Y.; Huang, C.C.; Ge, Y. NO3−/NH4+ ratios affect the growth and N removal ability of Acorus calamus and Iris pseudacorus in a hydroponic system. Aquat. Bot. 2009, 93, 216–220. [Google Scholar] [CrossRef]
- Yang, W.; Chang, J.; Xu, B.; Peng, C.H.; Ge, Y. Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China. Ecol. Econ. 2008, 68, 116–125. [Google Scholar] [CrossRef]
- Perbangkhem, T.; Polprasert, C. Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater. Bioresour. Technol. 2010, 10, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Fan, X.; Sun, H.Y.; Zhang, C.B.; Song, C.C.; Chang, S.X.; Gu, B.J.; Liu, Y.; Li, D.; Wang, Y.; et al. Plant species richness enhances nitrous oxide emissions in microcosms of constructed wetlands. Ecol. Eng. 2014, 64, 108–115. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.B.; Wang, J.; Liu, W.L.; Zhu, S.X.L.; Ge, H.L.; Chang, S.X.; Chang, J.; Ge, Y. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng. 2010, 36, 62–68. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Bansal, A.B.; Illukpitiya, P.; Tegegne, F.; Singh, S.P. Energy efficiency of ethanol production from cellulosic feedstock. Renew. Sustain Energy Rev. 2016, 58, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Smeets, E.M.W.; Lewandowski, I.M.; Faaij, A.P.C. The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew. Sustain Energy Rev. 2009, 13, 1230–1245. [Google Scholar] [CrossRef]
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Mola-Yudego, B.; Murphy, R.J. Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. Int. J. Life Cycle Ass. 2013, 18, 783–795. [Google Scholar] [CrossRef]
- Börjesson, P.; Berndes, G. The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 2006, 30, 428–438. [Google Scholar] [CrossRef]
- Shi, Y.; Ge, Y.; Chang, J.; Shao, H.B.; Tang, Y.L. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renew. Sustain Energy Rev. 2013, 22, 432–437. [Google Scholar] [CrossRef]
- Brown, S. Putting the landfill energy myth to rest. BioCycle 2010, 51, 23–35. [Google Scholar]
- Robertson, G.; Paul, E.; Harwood, R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radioactive forces of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- NSPRC (National Standards of the People’s Republic of China). Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. GB18918-2002. 2002. Available online: https://www.ecolex.org/details/legislation/discharge-standard-of-pollutants-for-municipal-wastewater-treatment-plant-national-standard-gb-18918-2002-lex-faoc136765/ (accessed on 1 July 2003).
Plant | Latin Name | Aboveground Biomass (kg ha−1 year−1) | Peak Aboveground Biomass (kg ha−1 year−1) | Reference |
---|---|---|---|---|
CW 1 plant | Phragmites australis, Typha latifolia, Arundo donax, et al. | 37,813 | 90,000 | Our study |
Switchgrass | Panicum virgatum L. | 5200–11,100 | 11,100 | [4,24] |
Miscanthus | Miscanthus x giganteus | 15,000–40,000 | 40,000 | [24,25] |
Napier grass | pennisetum purpureum | 88,000 | [25] | |
Echinochloa polystachya | 100,000 | |||
Poplar | 5000–11,000 | 11,000 | [25] | |
Agave spp. | Agave tequiliana | 10,000–34,000 | 34,000 | [25] |
Sugarcane | 10,000–11,000 | 11,000 | [25] | |
Corn grain | 3000–7000 | 9296 | [3,26] | |
Soybean biodiesel | 2661 | [3] | ||
Willow | 16,000–18,000 | 18,000 | [27,28] | |
LIHD 2 grassland | 3682–6000 | [5,25] | ||
Wood waste | 3900–7800 | [29] | ||
Municipal solid waste | 2500–4600 | [30] |
Item | CO2 Soil/Root Sequestration | N2O Emission | CH4 Emission | CO2 Release from Biomass Production 1 | Net CO2 Sequestration 2 | Net GHG Reduction from Biofuel Production 3 |
---|---|---|---|---|---|---|
CW biofuel | 31.0 | −3.7 | −17.2 | −1.2 | 29.8 | 8.8 |
LIHD grassland | 4.0 4 | −0.2 | 0.2 | −0.3 | 4.1 | 3.7 |
Switchgrass | 16.2 5 | - | - | −0.4 | 15.8 | - |
Item | Environmental Effect (Mg CO2 Equivalent ha−1 year−1) | Energy Effect (GJ ha−1) | |||||
---|---|---|---|---|---|---|---|
CO2 1 | CH4 | N2O | GWP 4 | Energy Input | Energy Output | NEB 5 | |
CW | −10.7 | −17.2 | −3.7 | −31.7 | 182.6 | 389.2 | 206.6 |
WTP | −607.3 | −84,957.4 2 | −481.0 3 | −86,045.4 | 7442.5 | 0.0 | −7442.5 |
Item | Energy Consumption1 (GJ ha−1 year−1) | CO2 Emission (Mg CO2 ha−1 year−1) | ||||
---|---|---|---|---|---|---|
SSF-CW 2 | SF-CW 3 | WTP | SSF-CW | SF-CW | WTP | |
Construction | 124.4 | 21.6 | 1733.9 | 10.1 | 1.8 | 141.5 |
construction material | 85.1 | 7.1 | 886.8 | 6.9 | 0.6 | 72.4 |
steel | 0.5 | — | 719.4 | 0.0 | — | 58.7 |
cement | 33.0 | 6.6 | 77.6 | 2.7 | 0.5 | 6.3 |
metal pipe | — | — | 62.4 | — | — | 5.1 |
timber | — | — | 2.2 | — | — | 0.2 |
gravel | 17.7 | — | 22.4 | 1.4 | — | 1.8 |
sand | 4.2 | — | 2.9 | 0.3 | — | 0.2 |
PC 4 liner | 20.7 | — | — | 1.7 | — | — |
PE 5 pipe | 4.6 | 0.5 | — | 0.4 | 0.0 | — |
geotextile | 4.5 | — | — | 0.4 | — | — |
Transportation | 27.5 | 2.7 | 55.7 | 2.2 | 0.2 | 4.5 |
Construction work | — | — | 791.4 | — | — | 64.6 |
Seedling plant | 11.8 | 11.8 | — | 1.0 | 1.0 | — |
Operation | 58.2 | 58.2 | 5708.6 | 4.8 | 4.8 | 465.8 |
Electricity and fuel | 32.3 | 32.3 | 3193.1 | 2.6 | 2.6 | 260.6 |
Chemical | — | — | 2449.6 | — | — | 199.9 |
Labor | 25.9 | 25.9 | 65.9 | 2.1 | 2.1 | 5.4 |
Total input | 182.6 | 79.9 | 7442.5 | 14.9 | 6.5 | 607.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Zou, C.; Xu, M. Environmental, Ecological, and Economic Benefits of Biofuel Production Using a Constructed Wetland: A Case Study in China. Int. J. Environ. Res. Public Health 2019, 16, 827. https://doi.org/10.3390/ijerph16050827
Liu D, Zou C, Xu M. Environmental, Ecological, and Economic Benefits of Biofuel Production Using a Constructed Wetland: A Case Study in China. International Journal of Environmental Research and Public Health. 2019; 16(5):827. https://doi.org/10.3390/ijerph16050827
Chicago/Turabian StyleLiu, Dong, Changxin Zou, and Mengjia Xu. 2019. "Environmental, Ecological, and Economic Benefits of Biofuel Production Using a Constructed Wetland: A Case Study in China" International Journal of Environmental Research and Public Health 16, no. 5: 827. https://doi.org/10.3390/ijerph16050827
APA StyleLiu, D., Zou, C., & Xu, M. (2019). Environmental, Ecological, and Economic Benefits of Biofuel Production Using a Constructed Wetland: A Case Study in China. International Journal of Environmental Research and Public Health, 16(5), 827. https://doi.org/10.3390/ijerph16050827