Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Methodology
2.2.1. Sample Selection
2.2.2. Data Analysis
3. Results and Discussion
3.1. Analysed Variables and Sample Characterisation
3.2. Cluster Analysis
3.3. Logit Model
3.4. Measures to Assure Aquifer Sustainability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; Early Warning and Assessment Report Series, RS. 03-3; United Nations Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Garrido, A.; Martínez-Santos, P.; Llamas, M.R. Groundwater irrigation and its implications for water policy in semiarid countries: The Spanish experience. Hydrogeol. J. 2006, 14, 340–349. [Google Scholar] [CrossRef]
- Boisson, A.; Villesseche, D.; Baisset, M.; Perrin, J.; Viossanges, M.; Kloppmann, W.; Chandra, S.; Dewandel, B.; Picot-Colbeaux, G.; Rangarajan, R.; et al. Questioning the impact and sustainability of percolation tanks as aquifer recharge structures in semi-arid crystalline context. Environ. Earth Sci. 2015, 73, 7711–7721. [Google Scholar] [CrossRef]
- Calera-Belmonte, A.; Medrano-González, J.; Vela-Mayorga, A.; Castaño-Fernández, S. GIS tools applied to the sustainable management of water resources. Application to the aquifer system 08-29. Agric. Water Manag. 1999, 40, 207–220. [Google Scholar] [CrossRef]
- Zepeda-Quintana, D.S.; Loeza-Rentería, C.M.; Munguía-Vega, N.E.; Esquer-Peralta, J.; Velazquez-Contreras, L.E. Sustainability strategies for coastal aquifers: A case study of the Hermosillo Coast aquifer. J. Clean. Prod. 2018, 195, 1170–1182. [Google Scholar] [CrossRef]
- Van Camp, M.; Radfar, M.; Walraevens, K. Assessment of groundwater storage depletion by overexploitation using simple indicators in an irrigated closed aquifer basin in Iran. Agric. Water Manag. 2010, 97, 1876–1886. [Google Scholar] [CrossRef]
- Ameur, F.; Amichi, H.; Kuper, M.; Hammani, A. Specifying the differentiated contribution of farmers to groundwater depletion in two irrigated areas in North Africa. Hydrogeol. J. 2017, 25, 1579–1591. [Google Scholar] [CrossRef]
- López-Sanz, G. Irrigation and agriculture at the Guadiana river High Basin (Castilla-La Mancha, Spain): Environmental and socio-economic impacts. In Proceedings of the Workshop on the Use of Water in Sustainable Agriculture, Albacete, Spain, 2–4 June 1997. [Google Scholar]
- Fishman, R.M.; Siegfried, T.; Raj, P.; Modi, V.; Lall, U. Over-extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour. Res. 2011, 47, W00L05. [Google Scholar] [CrossRef]
- Custodio, E. Aquifer overexploitation: What does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Vrbo, J.; Lippanen, A. (Eds.) Groundwater Resources Sustainability Indicators; UNESCO: Paris, France, 2007. [Google Scholar]
- Konikow, L.F. Groundwater depletion and over-exploitation: A global problem. In Proceedings of the 2002 Denver Annual Meeting, Denver, CO, USA, 27–30 October 2002. [Google Scholar]
- Quintana, J.; Tovar, J. Evaluación del acuífero de Lima (Perú) y medidas correctoras para contrarrestar la sobreexplotación. Boletín Geológico y Minero 2002, 113, 303–312. [Google Scholar]
- Assouline, S.; Shavit, U. Effects of management policies, including artificial recharge, on salinization in a sloping aquifer: The Israeli Coastal Aquifer case. Water Resour. Res. 2004, 40, W04101. [Google Scholar] [CrossRef]
- Duarte, T.K.; Minciardi, R.; Robba, M.; Sacile, R. Optimal control of coastal aquifer pumping towards the sustainability of water supply and salinity. Sustain. Water Qual. Ecol. 2015, 6, 88–100. [Google Scholar] [CrossRef]
- Chatterjee, R.; Jain, A.K.; Chandra, S.; Tomar, V.; Parchure, P.K.; Ahmed, S. Mapping and management of aquifers suffering from over‑exploitation of groundwater resources in Baswa‑Bandikui watershed, Rajasthan, India. Environ. Earth Sci. 2018, 77, 157. [Google Scholar] [CrossRef]
- Esteller, M.V.; Díaz-Delgado, C. Environmental effects of aquifer overexploitation: A case study in the highlands of Mexico. Environ. Manag. 2002, 29, 266–278. [Google Scholar] [CrossRef]
- Liu, J.; Rich, K.; Zheng, C. Sustainability analysis of groundwater resources in a coastal aquifer, Alabama. Environ. Geol. 2008, 54, 43–52. [Google Scholar] [CrossRef]
- Alcón, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D. Adoption of irrigation water policies to guarantee water supply: A choice experiment. Environ. Sci. Policy 2014, 44, 226–236. [Google Scholar] [CrossRef]
- Pongkijvorasin, S.; Roumasset, J.; Duarte, T.K.; Burnett, K. Renewable resource management with stock externalities: Coastal aquifers and submarine groundwater discharge. Resour. Energy Econ. 2010, 32, 277–291. [Google Scholar] [CrossRef]
- Ibáñez, J.; Martínez-Valderrama, J.; Puigdefábregas, J. Assessing overexploitation in Mediterranean aquifers using system stability condition analysis. Ecol. Model. 2008, 218, 260–266. [Google Scholar] [CrossRef]
- Mattas, C.; Voudouris, K.S.; Panagopoulos, A. Integrated groundwater resources management using the DPSIR approach in a GIS environment: A case study from the Gallikos River Basin, North Greece. Water 2014, 6, 1043–1068. [Google Scholar] [CrossRef]
- Molina, J.L.; García-Aróstegui, J.L.; Benavente, J.; Varela, C.; de la Hera, A.; López-Geta, J.A. Aquifers overexploitation in SE Spain: A proposal for the integrated analysis of water management. Water Resour. Manag. 2009, 23, 2737–2760. [Google Scholar] [CrossRef]
- Pulido, M.; Andreu, J.; Sahuquillo, A.; Pinilla, V.; Sánchez, A.; Capilla, J.; Paredes, J. Optimization of water resources management under aquifer overexploitation conditions: The Adra—Campo de Dalias system, Spain. WIT Trans. Ecol. Environ. 2002, 52, 87–99. [Google Scholar] [CrossRef]
- Khezzani, B.; Bouchemal, S. Variations in groundwater levels and quality due to agricultural over‑exploitation in an arid environment: The phreatic aquifer of the Souf oasis (Algerian Sahara). Environ. Earth Sci. 2018, 77, 142. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Senent-Aparicio, J.; Martinez-Vicente, D.; García-Aróstegui, J.L.; Cabezas-Calvo-Rubio, F.; Pérez-Sánchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Salcedo-Sánchez, E.R.; Esteller, M.V.; Garrido-Hoyos, S.E.; Martínez-Morales, M. Groundwater optimization model for sustainable management of the Valley of Puebla aquifer, Mexico. Environ. Earth Sci. 2013, 70, 337–351. [Google Scholar] [CrossRef]
- Martínez-Granados, D.; Calatrava, J. The role of desalinisation to address aquifer overdraft in SE Spain. J. Environ. Manag. 2014, 144, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Vélez, O.L.; Escobar-Villagrán, B.S. La sustentabilidad de la agricultura de riego ante la sobreexplotación de acuíferos. Tecnología y ciencias del agua 2016, 7, 5–16. [Google Scholar]
- Rodríguez-Estrella, T. The problems of overexploitation of aquifers in semi-arid areas: Characteristics and proposals for mitigation. Boletín Geológico y Minero 2014, 125, 91–109. [Google Scholar]
- Parisi, A.; Monno, V.; Fidelibus, M.D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. J. Disaster Risk Reduct. 2018, 30, 292–305. [Google Scholar] [CrossRef]
- Rosenthal, E. Hydrochemical changes induced by overexploitation of groundwater at common outlets of the Bet Shean-Harod multiple-aquifer system, Israel. J. Hydrol. 1988, 97, 107–128. [Google Scholar] [CrossRef]
- Sarah, S.; Ahmed, S.; Boisson, A.; Violette, S.; de Marsily, G. Projected groundwater balance as a state indicator for addressing sustainability and management challenges of overexploited crystalline aquifers. J. Hydrol. 2014, 519, 1405–1419. [Google Scholar] [CrossRef]
- Mittelstet, A.R.; Smolen, M.D.; Fox, G.A.; Adams, D.C. Comparison of aquifer sustainability under groundwater administrations in Oklahoma and Texas. J. Am. Water Resour. Assoc. 2011, 47, 424–431. [Google Scholar] [CrossRef]
- Albaladejo-García, J.A.; Martínez-Paz, J.M.; Colino, J. Evaluación financiera de la viabilidad del uso de agua desalada en la agricultura de invernadero del Campo de Níjar (Almería, España). ITEA 2018, 114, 398–414. [Google Scholar] [CrossRef]
- Foster, S.; Garduno, H.; Evans, R.; Olson, D.; Tian, Y.; Zhang, W.; Han, Z. Quaternary aquifer of the North China plain—assessing and achieving groundwater resource sustainability. Hydrogeol. J. 2004, 12, 81–93. [Google Scholar] [CrossRef]
- Jafari, H.; Shirafkan, M.; Bagheri, R.; Karami, G.H. Assessing sustainability of the Bahabad aquifer, Central Iran. Appl. Ecol. Environ. Res. 2018, 16, 2585–2602. [Google Scholar] [CrossRef]
- Calderhead, A.I.; Martel, R.; Garfias, J.; Rivera, A.; Therrien, R. Sustainable management for minimizing land subsidence of an over-pumped volcanic aquifer system: Tools for policy design. Water Resour. Manag. 2012, 26, 1847–1864. [Google Scholar] [CrossRef]
- Kulkarni, H.; Shankar, P.S.V.; Deolankar, S.B.; Shah, M. Groundwater demand management at local scale in rural areas of India: A strategy to ensure water well sustainability based on aquifer diffusivity and community participation. Hydrogeol. J. 2004, 12, 184–196. [Google Scholar] [CrossRef]
- Lambán, L.J.; Martos, S.; Rodríguez-Rodríguez, M.; Rubio, J.C. Application of groundwater sustainability indicators to the carbonate aquifer of the Sierra de Becerrero (Southern Spain). Environ. Earth Sci. 2011, 64, 1835–1848. [Google Scholar] [CrossRef]
- Le Coz, D. Sustainable management of a groundwater resource. The case of the Beauce aquifer. Houille Blanche Rev. Int. 2000, 7–8, 116–121. [Google Scholar] [CrossRef]
- Martínez-Granados, D.; Calatrava, J. Combining economic policy instruments with desalinisation to reduce overdraft in the Spanish Alto Guadalentín aquifer. Water Policy 2017, 19, 341–357. [Google Scholar] [CrossRef]
- Jothibasu, A.; Anbazhagan, S. Hydrogeological assessment of the groundwater aquifers for sustainability state and development planning. Environ. Earth Sci. 2018, 77, 88. [Google Scholar] [CrossRef]
- Sophocleous, M. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol. J. 2005, 13, 351–365. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Valera, D.L.; Belmonte, L.J.; Molina, F.D.; López, A. Greenhouse agriculture in Almería. In A Comprehensive Techno-Economic Analysis; Cajamar; Caja Rural: Almería, Spain, 2016. [Google Scholar]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Valera, D.L. Perceptions and acceptance of desalinated seawater for irrigation: A case study in the Níjar district (Southeast Spain). Water 2017, 9, 408. [Google Scholar] [CrossRef]
- Comunidad de Usuarios de la Comarca de Níjar (CUCN). Análisis Económico del Uso del Agua Desalada en la Agricultura de la Comarca de Níjar y Planteamiento de Alternativas; Comunidad de Usuarios de la Comarca de Níjar (CUCN): Almería, Spain, 2014. (In Spanish) [Google Scholar]
- Camacho, F. El futuro de la agricultura protegida sostenible en Almería. Distribución y Consumo 2017, 3, 40–51. [Google Scholar]
- Consejería de Agricultura, Pesca y Desarrollo Rural. Resumen Provincial del Cultivo de Frutas y Hortalizas, Almería; Consejería de Agricultura, Pesca y Desarrollo Rural: Almería, Spain, 2017. (in Spanish) [Google Scholar]
- Reca, J.; Trillo, C.; Sánchez, J.A.; Martínez, J.; Valera, D. Optimization model for on-farm irrigation management of Meditarranean greenhouse crops using desalinated and saline water from different sources. Agric. Syst. 2018, 166, 173–183. [Google Scholar] [CrossRef]
- Consejería Medio Ambiente y Ordenación del Territorio. Memoria del Plan Hidrológico de la Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas Ciclo 2015–2021; Consejería Medio Ambiente y Ordenación del Territorio, Junta de Andalucía: Sevilla, Spain, 2013. (in Spanish) [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD-96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. Available online: http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf (accessed on 23 May 2018).
- Wang, P.; Liu, S.; Liu, M.; Wang, Q.; Wang, J.; Zhang, C. The improved DBSCAN algorithm study on maize purity identification. In Computer and Computing Technologies in Agriculture V. CCTA 2011. IFIP Advances in Information and Communication Technology; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 369. [Google Scholar]
- Li, Y.; Cao, Z.; Lu, H.; Xiao, Y.; Zhu, Y.; Cremers, A.B. In-field cotton detection via region-based semantic image segmentation. Comput. Electron. Agric. 2016, 127, 475–486. [Google Scholar] [CrossRef]
- Majumdar, J.; Naraseeyappa, S.; Ankalaki, S. Analysis of agriculture data using data mining techniques: Application of big data. J. Big Data 2017, 4, 20. [Google Scholar] [CrossRef]
- Afrin, S.; Khan, A.T.; Mahia, M.; Ahsan, R.; Mishal, M.R.; Ahmed, W.; Rahman, R.M. Analysis of soil properties and climatic data to predict crop yields and cluster different agricultural regions of Bangladesh. Paper presented at the 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Singapore, 5–8 June 2018; pp. 80–85. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A. The highly variable economic performance of european agriculture. Land Use Pol. 2015, 45, 26–35. [Google Scholar] [CrossRef]
- Muthoni, F.K.; Guo, Z.; Bekunda, M.; Seguya, H.; Kizito, F.; Baijukya, F.; Hoeschle-Zeledon, I. Sustainable recommendation domains for scaling agricultural technologies in tanzania. Land Use Pol. 2017, 66, 34–48. [Google Scholar] [CrossRef]
- Li, T.; Sun, G.; Yang, C.; Liang, K.; Ma, S.; Huang, L. Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes. Sci. Total Environ. 2018, 628–629, 1446–1459. [Google Scholar] [CrossRef] [PubMed]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Pardo, I.; Delgado, C.; Abraín, R.; Gómez-Rodríguez, C.; García-Roselló, E.; García, L.; Reynoldson, T.B. A predictive diatom-based model to assess the ecological status of streams and rivers of northern Spain. Ecol. Indic. 2018, 90, 519–528. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Kunchulia, I.; Ghambashidze, G.; Al Sidawi, R.; Urushadze, T.; Ploeger, A. Farmers’ perception of water quality and risks in the mashavera river basin, georgia: Analyzing the vulnerability of the social-ecological system through community perceptions. Sustainability 2018, 10, 3062. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; Wiley: New York, NY, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Cox, D.R.; Snell, E.J. Analysis of Binary Data, 2nd ed.; Chapman and Hall/CRC: London, UK, 1989. [Google Scholar]
- Nagelkerke, N.J.D. A note on the general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
Variable | Description | Min | Max | Average | Standard Deviation | Variation Coefficient |
---|---|---|---|---|---|---|
V1 | Farmer’s academic level | 1 | 4 | 2.31 | 0.76 | 33.05% |
V2 | Contracted insurance | 0 | 2 | 0.26 | 0.46 | 175.58% |
V3 | Greenhouse surface (ha) | 0.60 | 4.00 | 1.29 | 0.43 | 33.53% |
V4 | Greenhouse building year | 1986 | 2014 | 1999 | 4.50 | 0.23% |
V5 | Irrigation technological level | 1 | 3 | 2.03 | 0.57 | 27.92% |
V6 | Greenhouse technological level | 6 | 10 | 6.89 | 1.31 | 18.99% |
V7 | Rainwater collection system | 0 | 1 | - | - | - |
V8 | Crop diversity | 0 | 1 | - | - | - |
V9 | Monoculture level | 1 | 4 | 2.65 | 0.98 | 36.95% |
V10 | Number of available water resources | 1 | 3 | 2.35 | 0.70 | 29.69% |
V11 | Aquifer water conductivity level (dS/m) | 2.1 | 14 | 3.33 | 2.24 | 67.32% |
V12 | Percentage of desalinated seawater use | 0 | 1 | 0.52 | 0.25 | 48.22% |
V13 | Percentage of rainwater use | 0 | 0.15 | 0.03 | 0.04 | 177.13% |
V14 | Setting back a fertilising layer on soil | 1 | 5 | 3.72 | 0.93 | 25.01% |
V15 | Reduce water extraction | 0 | 1 | - | - | - |
V16 | Increase well water price | 0 | 1 | - | - | - |
V17 | Close illegal wells | 0 | 1 | - | - | - |
V18 | Prohibit construction of new greenhouses | 0 | 1 | - | - | - |
V19 | Establish the compulsory consumption of desalinated seawater | 0 | 1 | - | - | - |
V20 | Install a compulsory rainwater collection system | 0 | 1 | - | - | - |
V21 | Reduce desalinated seawater price | 0 | 1 | - | - | - |
V22 | Tax relief for the consumption of desalinated seawater | 0 | 1 | - | - | - |
V23 | Continuity of agricultural activity by descendants | 0 | 1 | - | - | - |
Variable | Description | Conglomerate Root Mean Square | df | Error Root Mean Square | df | F | p-Value |
---|---|---|---|---|---|---|---|
V1 | Farmer’s academic level | 7.364 | 1 | 0.520 | 108 | 14.169 | 0.000 * |
V2 | Contracted insurance | 5.227 | 1 | 0.168 | 108 | 31.145 | 0.000 * |
V3 | Greenhouse surface (ha) | 0.058 | 1 | 0.073 | 108 | 0.800 | 0.373 |
V4 | Greenhouse building year | 13.838 | 1 | 20.348 | 108 | 0.680 | 0.411 |
V5 | Irrigation technological level | 9.821 | 1 | 0.232 | 108 | 42.265 | 0.000 * |
V6 | Greenhouse technological level | 0.259 | 1 | 1.726 | 108 | 0.150 | 0.699 |
V7 | Rainwater collection system | 9.865 | 1 | 0.142 | 108 | 69.603 | 0.000 * |
V8 | Crop diversity | 9.346 | 1 | 0.163 | 108 | 57.445 | 0.000 * |
V9 | Monoculture level | 0.158 | 1 | 0.970 | 108 | 0.163 | 0.687 |
V10 | Number of available water resources | 3.714 | 1 | 0.453 | 108 | 8.206 | 0.005 * |
V11 | Aquifer water conductivity level (dS/m) | 23.451 | 1 | 4.853 | 108 | 4.833 | 0.030 * |
V12 | Percentage of desalinated seawater use | 43,211.314 | 1 | 242.338 | 108 | 178.310 | 0.000 * |
V13 | Percentage of rainwater use | 465.770 | 1 | 15.479 | 108 | 30.091 | 0.000 * |
V14 | Setting back a fertilizing layer on soil | 22.651 | 1 | 0.663 | 108 | 34.160 | 0.000 * |
V15 | Reduce water extraction | 24.566 | 1 | 0.026 | 108 | 930.109 | 0.000 * |
V16 | Increase well water price | 22.901 | 1 | 0.043 | 108 | 538.822 | 0.000 * |
V17 | Close illegal wells | 9.778 | 1 | 0.123 | 108 | 79.267 | 0.000 * |
V18 | Prohibit construction of new greenhouses | 0.022 | 1 | 0.035 | 108 | 0.634 | 0.428 |
V19 | Establish the compulsory consumption of desalinated seawater | 2.502 | 1 | 0.145 | 108 | 17.224 | 0.000 * |
V20 | Install a compulsory rainwater collection system | 0.007 | 1 | 0.009 | 108 | 0.802 | 0.373 |
V21 | Reduce desalinated seawater price | 0.007 | 1 | 0.009 | 108 | 0.802 | 0.373 |
V22 | Tax relief for the consumption of desalinated seawater | 0.000 | 1 | 0.000 | 108 | - | - |
V23 | Continuity of agricultural activity by descendants | 0.006 | 1 | 0.244 | 108 | 0.024 | 0.877 |
Variable | Description | Cluster 1 Lower Use of Desalinated Seawater | Cluster 2 Higher Use of Desalinated Seawater |
---|---|---|---|
V1 | Farmer’s academic level | Upper secondary school | Upper secondary school/university |
V2 | Contracted insurance | 2.0% | 45.9% |
V5 | Irrigation technological level | 1.7 | 2.3 |
V7 | Rainwater collection system | 2.0% | 62.3% |
V8 | Crop diversity | Tomato or mixture | Pepper or mixture |
V10 | Number of available water resources | 2 | 3 |
V11 | Aquifer water conductivity level (dS/m) | 2.8 | 3.7 |
V12 | Percentage of desalinated seawater use | 30.2% | 70.1% |
V13 | Percentage of rainwater use | 0.2% | 4.3% |
V14 | Setting back a fertilizing layer on soil | Banding strips, 3–4 years | The whole surface, 3–4 years. |
V15 | Reduce water extractions | Completely disagree | 95.1% stated “Generally agree or completely agree” |
V16 | Increase well water price | Completely disagree | 91.8% stated “Generally agree or completely agree” |
V18 | Close illegal wells | Completely disagree | 96.7% stated “Generally agree or completely agree” |
V19 | Establish the compulsory consumption of desalinated seawater | 4.1% stated “Agree” | 34.4% stated “Generally agree or completely agree” |
Total exploitations 110 | 49 | 61 |
Variable | Description | Standard Error | Wald | fd | p-Value | ||
---|---|---|---|---|---|---|---|
V8 | Crop diversity | 7.086 | 2.397 | 8.742 | 1 | 0.003 * | 1195.422 |
V10 | Number of available water resources | 10.363 | 3.156 | 10.783 | 1 | 0.001 * | 31661.706 |
V11 | Aquifer water conductivity (dS/m) | 2.125 | 0.865 | 6.036 | 1 | 0.014 * | 8.370 |
Constant | ‒31.308 | 10.363 | 9.127 | 1 | 0.003 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Valera, D.L. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. https://doi.org/10.3390/ijerph16050898
Aznar-Sánchez JA, Belmonte-Ureña LJ, Velasco-Muñoz JF, Valera DL. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. International Journal of Environmental Research and Public Health. 2019; 16(5):898. https://doi.org/10.3390/ijerph16050898
Chicago/Turabian StyleAznar-Sánchez, José A., Luis J. Belmonte-Ureña, Juan F. Velasco-Muñoz, and Diego L. Valera. 2019. "Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain" International Journal of Environmental Research and Public Health 16, no. 5: 898. https://doi.org/10.3390/ijerph16050898
APA StyleAznar-Sánchez, J. A., Belmonte-Ureña, L. J., Velasco-Muñoz, J. F., & Valera, D. L. (2019). Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. International Journal of Environmental Research and Public Health, 16(5), 898. https://doi.org/10.3390/ijerph16050898