Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites
Abstract
:1. Introduction
2. Methods
2.1. Study Locations and Designs
2.2. Description of Recycling Activities and Likely Exposure Pathways
2.3. Health Risk Assessment
Inhalation Hazard Quotient (HQinh) = ADD/RfC
Dermal Hazard Quotient (HQder) = ADD/(RfD × GIABS)
Carcinogenic riskinh = ADDinh × IUR
Carcinogenic riskder = ADDder × (SF × GIABS)
2.4. Ethical Considerations
3. Results
3.1. Descriptive Statistics of the PBDE and Metals
3.2. Human Health Risk Assessment
3.2.1. Quantitative Estimation of Non-Carcinogenic Effects
3.2.2. Quantitative Estimation of Risk of Developing Cancers
4. Discussion
4.1. Health Risk Assessments
4.2. Implications for Health Risks
- That government and other formal institutions design effective occupational health and safety (OSH) programs for the informal e-waste workers.
- The enforcement of the policies and regulations. One effective way to enforce safety is for formal institutions to work with the informal e-waste recycling associations to identify comfortable PPE, and to communicate the health risks peculiar to informal e-waste recycling and the safety measures to be undertaken. However, to effectively implement any OSH program in this sector, it should be borne in mind that the approach must be situation specific. The approach may differ depending on the type of job performed and location. In addition, enforcement agencies must not be seen to be at cross-purposes with the informal e-waste sector, as it frequently appears because informal associations have proved to operate efficiently without any formal support.
- The ban of open burning of e-waste and other risky practices. If open burning of e-waste is not banned, the effects will consequently affect those living far away from the recycling sites through pollution of soil, air, underground water, and contamination of plants and foods. These contaminants might even affect the unborn generation. One way to ensure such a ban is to (a) devise appropriate alternative ways of e-waste recycling with caution to protect health and environment, (b) bridge the communication gap between enforcement agencies and informal e-waste workers, and (c) for the informal e-waste recycling associations to be made accountable for safer practices.
- More studies on air monitoring of the e-waste recycling sites, especially at the burning sites as fine particles would not have been captured in the samples analyzed for this study. Air monitoring of the site might reveal exposure via inhalation as a significant route of exposure.
- The use of the hierarchical control method in the informal e-waste recycling sector(Figure 10). Such controls are simple steps that will help to minimize exposure and health risks associated with informal e-waste recycling, without impeding the workers’ source of livelihood. This will not only protect the e-waste workers, but also protect people around the e-waste recycing sites.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baldé, K.; Kuehr, R.; Blumenthal, K.; FondeurGill, S.; Kern, M.; Micheli, P.; Huisman, J. E-Waste Statistics: Guidelines on Classifications, Reporting and inDicators 2015; United Nations University, IAS-SCYCLE: Bonn, Germany, 2015. [Google Scholar]
- Baldé, C.P.; Wang, F.; Kuehr, R.; Huisman, J. E-Waste Monitor 2014: Quantities, Flows and Resources; United Nations University, IAS-SCYCLE: Bonn, Germany, 2014. [Google Scholar]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor 2017: Quantities, Flows, and Resources; United Nations University, IAS-SCYCLE: Bonn, Germany, 2017. [Google Scholar]
- Perkins, D.N.; BruneDrisse, M.-N.; Nxele, T.; Sly, P.D. E-Waste: AGlobalHazard. Ann. Glob. Health 2014, 80, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.K.; Zeng, X.; Li, J. Environmental pollution of electronic waste recycling in India: Acritical review. Environ. Pollut. 2016, 211, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Brigden, K.; Labunska, I.; Santillo, D.; Johnston, P. Chemical Contamination at E-Waste Recycling and Disposal Sites in ACCRA and Korforidua, Ghana; technical note; Greenpeace Research Laboratories: Amsterdam, The Netherlands, 2008; p. 24. [Google Scholar]
- Asante, K.A.; Agusa, T.; Biney, C.A.; Agyekum, W.A.; Bello, M.; Otsuka, M.; Itai, T.; Takahashi, S.; Tanabe, S. Multi-trace element levels and arsenic speciation inurine of e-waste recycling workers from Agbogbloshie, Accrain Ghana. Sci. Total Environ. 2012, 424, 63–73. [Google Scholar] [CrossRef]
- Ohajinwa, C.M.; VanBodegom, P.M.; Vijver, M.G.; Peijnenburg, W.J.G.M. Health risks awareness of electronic waste workers in the informal sector in Nigeria. Int. J. Environ. Res. Public Health 2017, 14, 911. [Google Scholar] [CrossRef] [PubMed]
- Strategic Approach to International Chemicals Management (SAICM). Background information in relation to theemerging policy issue of electronic waste. In Proceedings of the Implementation of the Strategic Approach to International Chemicals Management: Emerging Policy Issues, Geneva, Switzerland, 11–15 May 2009; pp. 1–13. [Google Scholar]
- United Nations Environmental Programme (UNEP). Bamako Convention on the Ban of the Import to Africa and the Control of Transboundary Movement and Management of Hazardous Wastes within Africa; Lagos, Nigeria, 1991. Available online: https://www.jus.uio.no/lm/hazardous.waste.ban.afrian.import.bamako.convention.1991/portrait.pdf (accessed on 11 March 2019).
- Lundgren, K. The Global Impact of E-Waste: Addressing the Challenge; International Labour Organization: Geneva, Switzerland, 2012. [Google Scholar]
- United Nations Environmental Programme (UNEP) and Basel Convention. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal; Secretariat of the Basel Convention: Châtelaine, Switzerland, 1989. [Google Scholar]
- United Nations Environment Programme (UNEP). E-Waste Volume I: Inventory Assessment Manual; United Nations Environment Programme, Division of Technology, Industry and Economics, International Environmental Technology Centre: Osaka, Japan, 2007; p. 127. Available online: http://www.unep.or.jp/ietc/Publications/spc/EWasteManual_Vol1.pdf (accessed on 11 March 2019).
- Chen, L.; Wang, C.; Zhang, Y.; Zhou, Y.; Shi, R.; Cui, C.; Gao, Y.; Tian, Y. Polybrominated diphenyl ethers in cord blood and perinatal outcomes from Laizhou Wan Birth Cohort, China. Environ. Sci. Pollut. Res. 2018, 25, 20802–20808. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Liu, L.; Zhao, N. Polybrominated diphenyl ethers fate in China: Are view with an emphasis on environmental contamination levels, human exposure and regulation. J. Environ. Manag. 2012, 113, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ohajinwa, C.M.; VanBodegom, P.M.; Vijver, M.G.; Olumide, A.O.; Osibanjo, O.; Peijnenburg, W.J.G.M. Prevalence and injury patterns among electronic waste workers in the informal sector in Nigeria. Inj. Prev. 2018, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.; Goldizen, F.C.; Sly, P.D.; Brune, M.N.; Neira, M.; vandenBerg, M.; Norman, R.E. Health consequences of exposure to e-waste: A systematic review. Lancet Glob. Health 2013, 1, e350–e361. [Google Scholar] [CrossRef]
- Chen, A.; Dietrich, K.N.; Huo, X.; Ho, S. Developmental neurotoxicantsin e-waste: An emerging health concern. Environ. Health Perspect. 2011, 119, 431–438. [Google Scholar] [CrossRef]
- Burns, K.N.; Sayler, K.S.; Neitzel, L.R. Stress, health, noise exposures, and Injuries among electronic waste recycling workers in Ghana. J. Occup. Med. Toxicol. 2019, 14, 1. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Zhou, J.; Wu, B.; Liang, Y.; Peng, Z.; Fang, D.; Liu, B.; Huang, H.; He, C.; et al. Elevated body burdens of PBDEs, dioxins, and PCBs on thyroid hormone homeostasis at an electronic waste recycling site in China. Environ. Sci. Technol. 2010, 44, 3956–3962. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, L.; Chen, D.; Guo, H.; Bi, X.; Ju, Y.; Jiang, P.; Shi, J.; Yu, Z.; Yang, J.; et al. Elevated serum polybrominated diphenyl ethers and thyroid-stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an E-waste dismantling site. Environ. Sci. Technol. 2008, 42, 2195–2200. [Google Scholar] [CrossRef]
- Wu, K.; Xu, X.; Liu, J.; Guo, Y.; Li, Y.; Huo, X. Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environ. Sci. Technol. 2010, 44, 813–819. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Liu, Q.; Wang, F.; Nie, J.; Qian, Y. Examining the relationship between brominated flame retardants (BFR) exposure and changes of thyroid hormone levels around e-waste dismantling sites. Int. J. Hyg. Environ. Health 2010, 213, 369–380. [Google Scholar] [CrossRef]
- Wu, K.; Xu, X.; Liu, J.; Guo, Y.; Huo, X. In utero exposure to polychlorinated biphenyls and reduced neonatal physiological development from Guiyu, China. Ecotoxicol. Environ. Saf. 2011, 74, 2141–2147. [Google Scholar] [CrossRef]
- Wu, K.; Xu, X.; Peng, L.; Liu, J.; Guo, Y.; Huo, X. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ. Int. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, X.; Li, B.; Wu, K.; Yekeen, T.A.; Huo, X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 67–72. [Google Scholar] [CrossRef]
- Guo, Y.; Huo, X.; Li, Y.; Wu, K.; Liu, J.; Huang, J.; Zheng, G.; Xiao, Q.; Yang, H.; Wang, Y.; et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci. Total Environ. 2010, 408, 3113–3117. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Liu, J.; Wu, K.; Gu, C.; Shao, G.; Chen, S.; Chen, G.; Huo, X. The hazard of chromium exposure to neonates in Guiyu of China. Sci. Total Environ. 2008, 403, 99–104. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Chen, A.; Zhou, Y.; Wu, K.; Liu, J.; Zhang, Y.; Huo, X. Birth outcomes related to informal e-waste recycling in Guiyu, China. Reprod. Toxicol. 2012, 33, 94–98. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, K.; Chen, G.; Liu, J.; Chen, S.; Gu, C.; Zhang, B.; Zheng, L.; Zheng, M.; et al. Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China. J. Environ. Monit. 2008, 10, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Peng, L.; Xu, X.; Zheng, L.; Qiu, B.; Qi, Z.; Zhang, B.; Han, D.; Piao, Z. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ. Health Perspect. 2007, 115, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC) Monographs. Arsenic, Metals, Fibres, and Dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 407–443. [Google Scholar]
- Liu, J.; Xu, X.; Wu, K.; Piao, Z.; Huang, J.; Guo, Y.; Li, W.; Zhang, Y.; Chen, A.; Huo, X. Association between lead exposure from electronic waste recycling and child temperament alterations. Neurotoxicology 2011, 32, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohajinwa, C.M.; vanBodegom, P.M.; Vijver, M.G.; Peijnenburg, W.J.G.M. Impact of informal electronic waste recycling on metal concentrations in soils and dusts. Environ. Res. 2018, 164, 385–394. [Google Scholar] [CrossRef]
- Ohajinwa, C.M.; van Bodegom, P.M.; Xie, Q.; Chen, J.; Vijver, M.G.; Osibanjo, O.O.; Peijnenburg, W.J.G.M. Hydrophobic Organic Pollutants in Soils and Dusts at Electronic Waste Recycling Sites: Occurrence and Possible Impacts of Polybrominated Diphenyl Ethers. Int. J. Environ. Res. Public Health 2019, 16, 360. [Google Scholar] [CrossRef]
- Luo, Q.; Wong, M.H.; Wang, Z.; Cai, Z. Polybrominated diphenyl ethers in combusted residues and soils from an open burning site of electronic wastes. Environ. Earth Sci. 2012, 69, 2633–2641. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xu, X.; Wu, Y.; Ge, J.; Li, W.; Huo, X. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: Distribution, compositional profile, and sources. Chemosphere 2014, 102, 55–60. [Google Scholar] [CrossRef]
- Tue, N.M.; Goto, A.; Takahashi, S.; Itai, T.; Asante, K.A.; Kunisue, T.; Tanabe, S. Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J. Hazard. Mater. 2016, 302, 151–157. [Google Scholar] [CrossRef]
- Akortia, E.; Olukunle, O.I.; Daso, A.P.; Okonkwo, J.O. Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dumpsite in the Greater Accra Region, Ghana: Implications for human exposure. Ecotoxicol. Environ. Saf. 2017, 137, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Ogungbuyi, O.; Nnorom, I.C.; Osibanjo, O.; Schluep, M. E-Waste Country Assessment Nigeria. A Report of E-Waste Africa Project of the Secretariat of Basel Convention; Secretariat of Basel Convention: Nigeria, 2012; Available online: http://ewasteguide.info/files/Ogungbuyi_2012_BCCC-Empa.pdf (accessed on 11 March 2019).
- Capstick, S.; Whitmarsh, L.; Healy, A.; Bristow, G. Resilience in Groundwater Supply Systems: Findings from a Survey of Private Households in Lagos, Nigeria. Resilience in Integrated Ground water Supply Systems (RISS) working paper. Cardiff University, UK, 2017. Available online: https://www.cardiff.ac.uk/__data/assets/pdf_file/0003/1090650/Perspectives_of_households_in_Lagos.pdf (accessed on 13 March 2019).
- Ferreira-Baptista, L.; DeMiguel, E. GeochemistryandriskassessmentofstreetdustinLuanda, Angola: Atropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening; USEPA Superfund; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2002; p. 106.
- USEPA. Risk Assessment Guidance for Superfund (RAGS) Volume III—Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 2001; pp. 1–385. Available online: http://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf (accessed on 11 March 2019).
- United States Environmental Protection Agency (USEPA). Exposure Factors Handbook; United States Environmental Protection Agency, National Centre for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 1997; Volume I, ISBN EPA/600/P-95/002Fa-c.
- United States Environmental Protection Agency (USEPA). Exposure Factors Handbook 2011 Edition; EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–1466.
- United State Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, Human Health Evaluation Manual (Part A); EPA/540/1-89/002; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 1989; Volume I.
- United States Environmental Protection Agency (USEPA). Regional Screening Level (RSL) Summary Table (TR = 1E-06, HQ = 1); USEPA: Washington, DC, USA, 2017. Available online: https://semspub.epa.gov/work/HQ/197241.pdf (accessed on 11 November 2017).
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Agminein Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Adamu, C.I.; Nganje, T.N.; Edet, A. Heavy metal contamination and health risk assessment associated with abandoned bariteminesin Cross River State, southeastern Nigeria. Environ. Nanotechnol. Monit. Manag. 2015, 3, 10–21. [Google Scholar] [CrossRef]
- Du, Y.; Gao, B.; Zhou, H.; Ju, X.; Hao, H.; Yin, S. Health Risk Assessment of Heavy Metals in Road Dustsin Urban Parks of Beijing, China. Procedia Environ. Sci. 2013, 18, 299–309. [Google Scholar] [CrossRef]
- Olujimi, O.; Steiner, O.; Goessler, W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. J. Afr. Earth Sci. 2015, 101, 396–404. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. General Assembley 70 Session. New York, NY, USA, 2015; Volume 16301. Available online: www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 13 March 2019).
- Ni, K.; Lu, Y.; Wang, T.; Kannan, K.; Gosens, J.; Xu, L.; Li, Q.; Wang, L.; Liu, S. Are view of human exposure to polybrominated diphenyl ethers (PBDEs) in China. Int. J. Hyg. Environ. Health 2013, 216, 607–623. [Google Scholar] [CrossRef] [PubMed]
- Civan, M.Y.; Kara, U.M. Risk assessment of PBDEs and PAHs inhouse dust in Kocaeli, Turkey: Levels and sources. Environ. Sci. Pollut. Res. 2016, 23, 23369–23384. [Google Scholar] [CrossRef]
- Song, Q.; Zeng, X.; Li, J.; Duan, H.; Yuan, W. Environmental risk assessment of CRT and PCB workshops in a mobile e-waste recycling plant. Environ. Sci. Pollut. Res. 2015, 22, 12366–12373. [Google Scholar] [CrossRef]
- DeAlmeida, R.A.C.D.S.; Veiga, M.M.; DeCastroMouraDuarte, F.J.; Meirelles, L.A.; Veiga, L.B.E. Thermal comfort and personal protective equipment (PPE). Work 2012, 41, 4979–4982. [Google Scholar] [CrossRef]
- Festinger, L. A Theory of Cognitive Dissonance; Standford University: Standford, CA, USA, 1957; ISBN 9780804709118. [Google Scholar]
- Pradhan, J.K.; Kumar, S. Informal e-wasterecycling: Environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ. Sci. Pollut. Res. 2014, 21, 7913–7928. [Google Scholar] [CrossRef] [PubMed]
- International Labour Organization (ILO). Tripartite Meeting on the Construction Industry in the Twenty-First Century: Its Image, Employment Prospects and Skill Requirements; International Labour Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Egorova, K.S.; Ananikov, V.P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef]
- Ministerievan Volkshuisvesting Ruimtelijke Ordeningen Milieubeheer (VROM). Dutch Target and Intervention Values (The New Dutch List): Soil Quality Standards; VROM: Utrecht, The Netherlands, 2000; Volume 2000. [Google Scholar]
- Occupational Safety and Health Administration (OSHA). Recommended Practices for Safety and Health Programs; No. OSHA3885; OSHA: Washington, DC, USA, 2016. [Google Scholar]
Chemical | Effects | Reference |
---|---|---|
PCDD/Fs | Thyroid function | [20] |
PBDEs | Thyroid function, Reproductive health, endocrine disruption | [20,21,22,23] |
PATHs, PFOA | Reproductive health | [24,25] |
Cr, Mn, Ni | Lung function | [26] |
Pb, Cr, Cd, Ni | Reproductive health | [27,28,29,30] |
PCBs | Reproductive health, thyroid function | [20,29] |
Mn, Ni, Pb | Growth | [26,31,32] |
Pb | Mental health outcomes | [28,33] |
As, Cd, Ni, Cr, Hg, Cu | Cancer, oxidative stress, DNA damage | [32,34] |
Abbreviations | Exposure Factors | Exposure Values | References |
---|---|---|---|
C (mg/g) | Median Concentration of the PBDE or metals | Shown in Supplementary Tables S1–S6 | This study |
Ring (mg/day) | Ingestion rate | 30 mg/day | [47] |
Rinh (m3/day) | inhalation rate | 20 m3/day | [45] |
EF (days/year) | Exposure frequency | 313 days/year | This study |
Work days | Average work days | 6 days/week | This study |
ED (years) | Exposure duration | 24 years | [45] |
ET (hours/day) | Exposure time in hours/day at work | 9 h/day | This study |
BW (kg) | Average body weight (279 workers) | 67 kg | This study |
AT (days) | Average time (ED × 365 days) for non-carcinogens) | 24 × 365 days | [45] |
Average time (70 × 365 days) for carcinogens | 70 × 365 days | [45] | |
Age | Median age of the workers | 29 years | This study |
SA (cm2) | Skin surface area | 5700 cm2(most of them do not use any PPE) | [48] |
AF (unitless) | Skin adherence factor | 0.2 mg/cm2.day | [45] |
ABS (unitless) | Dermal absorption factor | 0.1 (for semi-volatile compounds) | [45] |
PEF (m3/kg) | Particle emission factor | 1.36 × 109 m3/kg | [45] |
CF | Conversion factor | 10−6 | [45] |
RfDi (mg/kg/day) | reference dose via ingestion, inhalation, and dermal contact | available for four PBDE congeners and 19 metals | [49] |
RfC (mg/m3) | Reference concentration | -- | [49] |
IUR | Inhalation Unit Risk | -- | [49] |
ADD (mg/kg/day) | average daily dose | Calculated and shown in Supplementary Tables S7–S12 | This study |
HQ (unitless) | Hazard quotient | -- | |
HI | Hazard index | -- | |
SF | Slope factor | -- | [49] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohajinwa, C.M.; van Bodegom, P.M.; Osibanjo, O.; Xie, Q.; Chen, J.; Vijver, M.G.; Peijnenburg, W.J.G.M. Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. Int. J. Environ. Res. Public Health 2019, 16, 906. https://doi.org/10.3390/ijerph16060906
Ohajinwa CM, van Bodegom PM, Osibanjo O, Xie Q, Chen J, Vijver MG, Peijnenburg WJGM. Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. International Journal of Environmental Research and Public Health. 2019; 16(6):906. https://doi.org/10.3390/ijerph16060906
Chicago/Turabian StyleOhajinwa, Chimere May, Peter M. van Bodegom, Oladele Osibanjo, Qing Xie, Jingwen Chen, Martina G. Vijver, and Willie J. G. M. Peijnenburg. 2019. "Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites" International Journal of Environmental Research and Public Health 16, no. 6: 906. https://doi.org/10.3390/ijerph16060906
APA StyleOhajinwa, C. M., van Bodegom, P. M., Osibanjo, O., Xie, Q., Chen, J., Vijver, M. G., & Peijnenburg, W. J. G. M. (2019). Health Risks of Polybrominated Diphenyl Ethers (PBDEs) and Metals at Informal Electronic Waste Recycling Sites. International Journal of Environmental Research and Public Health, 16(6), 906. https://doi.org/10.3390/ijerph16060906