Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy and Inclusion Criteria
2.2. Methods Used to Summarized Exposure Levels
3. Results
3.1. Sources
3.2. Indoor Environments
3.3. Assessment Strategies
3.3.1. Spot and Long-Term Measurements
3.3.2. Personal Measurements
3.3.3. Most Common Used Measurement Devices
3.3.4. Modelling and Simulations
3.4. RF-EMF Exposure Levels
3.4.1. Exposure in Public Places
Working Places
Educational Buildings
3.4.2. Exposure in Private Places
3.4.3. Exposure in Public and Private Transportation
3.4.4. Comparison between Different Types of Indoor Environments
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gajšek, P.; Ravazzani, P.; Wiart, J.; Grellier, J.; Samaras, T.; Thuróczy, G. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J. Expo. Sci. Environ. Epidemiol. 2015, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Birks, L.E.; Struchen, B.; Eeftens, M.; van Wel, L.; Huss, A.; Gajšek, P.; Kheifets, L.; Gallastegi, M.; Dalmau-Bueno, A.; Estarlich, M.; et al. Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environ. Int. 2018, 117, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Frei, P.; Mohler, E.; Bürgi, A.; Fröhlich, J.; Neubauer, G.; Braun-Fahrländer, C.; Röösli, M. Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research: Evaluation of different exposure assessment methods. Environ. Int. 2010, 36, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Sagar, S.; Dongus, S.; Schoeni, A.; Roser, K.; Eeftens, M.; Struchen, B.; Foerster, M.; Meier, N.; Adem, S.; Röösli, M. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: A systematic literature review. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Urbinello, D.; Joseph, W.; Verloock, L.; Martens, L.; Röösli, M. Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities. Environ. Res. 2014, 134, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verloock, L.; Joseph, W.; Goeminne, F.; Martens, L.; Verlaek, M.; Constandt, K. Temporal 24-hour assessment of radio frequency exposure in schools and homes. Meas. J. Int. Meas. Confed. 2014, 56, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Zeghnoun, A.; Dor, F. Description du Budget Espace Temps et Estimation de Lexposition de la Population Francaise Dans Son Logement; Institut de Veille Sanitaire: Lyon, France, 2010. [Google Scholar]
- Lauer, O.; Frei, P.; Gosselin, M.C.; Joseph, W.; Röösli, M.; Fröhlich, J. Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: A reference case. Bioelectromagnetics 2013, 34, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Gati, A.; Conil, E.; Wong, M.F.; Wiart, J. Duality between uplink local and downlink whole-body exposures in operating networks. IEEE Trans. Electromagn. Compat. 2010, 52, 829–836. [Google Scholar] [CrossRef]
- Liorni, I.; Parazzini, M.; Varsier, N.; Hadjem, A.; Ravazzani, P.; Wiart, J. Exposure assessment of one-year-old child to 3G tablet in uplink mode and to 3G femtocell in downlink mode using polynomial chaos decomposition. Phys. Med. Biol. 2016, 61, 3237–3257. [Google Scholar] [CrossRef]
- Chiaramello, E.; Parazzini, M.; Fiocchi, S.; Bonato, M.; Ravazzani, P.; Wiart, J. Stochastic Exposure Assessment to 4G LTE femtocell in indoor environments. In Proceedings of the 2nd URSI Atlantic Radio Science Meeting, Meloneras, Spain, 28 May–1 June 2018; pp. 1–4. [Google Scholar]
- Chiaramello, E.; Parazzini, M.; Fiocchi, S.; Bonato, M.; Ravazzani, P.; Wiart, J. Children exposure to 4G LTE femtocell in indoor environments estimated by sparse low rank tensor approximations. Ann. Telecommun. 2019, 74, 113–121. [Google Scholar] [CrossRef]
- Boursianis, A.; Vanias, P.; Samaras, T. Measurements for assessing the exposure from 3G femtocells. Radiat. Prot. Dosim. 2012, 150, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Zarikoff, B.; Malone, D. A Comparison of RF Exposure in Macro- and Femtocells. Health Phys. 2013, 105, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Aerts, S.; Plets, D.; Verloock, L.; Martens, L.; Joseph, W. Influence of an Indoor Small Cell on the Human Exposure to Radio Frequency Electromagnetic Fields. In Proceedings of the Joint Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM 2014), Cape Town, South Africa, 9–13 June 2014; pp. 435–438. [Google Scholar]
- Aerts, S.; Plets, D.; Verloock, L.; Martens, L.; Joseph, W. Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios. Radiat. Prot. Dosim. 2014, 162, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.; Moulder, J. Wi-fi and health: Review of current status of research. Health Phys. 2013, 105, 561–575. [Google Scholar] [CrossRef]
- Hedendahl, L.K.; Carlberg, M.; Koppel, T.; Hardell, L. Measurements of Radiofrequency Radiation with a Body-Borne Exposimeter in Swedish Schools with Wi-Fi. Front. Public Health 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Tomitsch, J.; Dechant, E. Exposure to electromagnetic fields in households-Trends from 2006 to 2012. Bioelectromagnetics 2015, 36, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Joseph, W.; Frei, P.; Roösli, M.; Thuróczy, G.; Gajsek, P.; Trcek, T.; Bolte, J.; Vermeeren, G.; Mohler, E.; Juhász, P.; et al. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ. Res. 2010, 110, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Bolte, J.F.B.; Eikelboom, T. Personal radiofrequency electromagnetic field measurements in the Netherlands: Exposure level and variability for everyday activities, times of day and types of area. Environ. Int. 2012, 48, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Bolte, J.F.B. Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters. Environ. Int. 2016, 94, 724–735. [Google Scholar] [CrossRef]
- Goedhart, G.; Vrijheid, M.; Wiart, J.; Hours, M.; Kromhout, H.; Cardis, E.; Eastman Langer, C.; de Llobet Viladoms, P.; Massardier-Pilonchery, A.; Vermeulen, R. Using software-modified smartphones to validate self-reported mobile phone use in young people: A pilot study. Bioelectromagnetics 2015, 36, 538–543. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Redmayne, M.; Abramson, M.J.; Benke, G. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures. Australas. Phys. Eng. Sci. Med. 2016, 39, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Röösli, M.; Frei, P.; Mohler, E.; Braun-Fahrlander, C.; Burgi, A.; Frohlich, J.; Neubauer, G.; Theis, G.; Egger, M. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics 2008, 29, 471–478. [Google Scholar]
- Viel, J.F.; Cardis, E.; Moissonnier, M.; de Seze, R.; Hours, M. Radiofrequency exposure in the French general population: Band, time, location and activity variability. Environ. Int. 2009, 35, 1150–1154. [Google Scholar] [CrossRef]
- Urbinello, D.; Huss, A.; Beekhuizen, J.; Vermeulen, R.; Röösli, M. Use of portable exposure meters for comparing mobile phone base station radiation in different types of areas in the cities of Basel and Amsterdam. Sci. Total Environ. 2014, 468, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Breckenkamp, J.; Blettner, M.; Schüz, J.; Bornkessel, C.; Schmiedel, S.; Schlehofer, B.; Berg-Beckhoff, G. Residential characteristics and radiofrequency electromagnetic field exposures from bedroom measurements in Germany. Radiat. Environ. Biophys. 2012, 51, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Hardell, L.; Koppel, T.; Carlberg, M.; Ahonen, M.; Hedendahl, L. Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields. Int. J. Oncol. 2016, 49, 1315–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, W.; Verloock, L.; Goeminne, F.; Vermeeren, G.; Martens, L. Assessment of RF exposures from emerging wireless communication technologies in different environments. Health Phys. 2012, 102, 161–172. [Google Scholar] [CrossRef]
- Miclaus, S.; Bechet, P.; Stratakis, D. Exposure levels due towlan devices in indoor environments corrected byatime–amplitude factor of distribution of the quasi-stochastic signals. Radiat. Prot. Dosim. 2014, 162, 536–543. [Google Scholar] [CrossRef]
- Gryz, K.; Zradziński, P.; Karpowicz, J. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450MHz and Compliance Analysis: Evaluation by Virtual Measurements. Biomed. Res. Int. 2015, 2015, 272460. [Google Scholar] [CrossRef]
- De Miguel-Bilbao, S.; García, J.; Ramos, V.; Blas, J. Assessment of human body influence on exposure measurements of electric field in indoor enclosures. Bioelectromagnetics 2015, 36, 118–132. [Google Scholar] [CrossRef]
- Gryz, K.; Karpowicz, J.; Leszko, W.; Zradziński, P. Evaluation of exposure to electromagnetic radiofrequency radiation in the indoor workplace accessible to the public by the use of frequency-selective exposimeters. Int. J. Occup. Med. Environ. Health 2014, 27, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Roosli, M.; Frei, P.; Bolte, J.; Neubauer, G.; Cardis, E.; Feychting, M.; Gajsek, P.; Heinrich, S.; Joseph, W.; Mann, S.; et al. Conduct of a personal radiofrequency electromagnetic field measurement study: Proposed study protocol. Environ. Health 2010, 9, 23. [Google Scholar] [CrossRef]
- Aminzadeh, R.; Thielens, A.; Bamba, A.; Kone, L.; Gaillot, D.P.; Lienard, M.; Martens, L.; Joseph, W. On-Body calibration and measurements using personal radio frequency exposimeters in indoor diffuse and specular environments. Bioelectromagnetics 2016, 37, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Chiaramello, E.; Parazzini, M.; Fiocchi, S.; Ravazzani, P.; Wiart, J. Assessment of Fetal Exposure to 4G LTE Tablet in Realistic Scenarios: Effect of Position, Gestational Age and Frequency. IEEE J. Electromagn. RF Microwaves Med. Biol. 2017, 1, 26–33. [Google Scholar] [CrossRef]
- Aguirre, E.; Arpon, J.; Azpilicueta, L.; De Miguel, S.; Ramos, V.; Falcone, F.J. Evaluation of Electromagnetic Dosimetry of Wireless Systems in Complex Indoor Scenarios with Human Body Interaction. Prog. Electromagn. Res. B 2012, 43, 189–209. [Google Scholar] [CrossRef]
- Aguirre, E.; Arpón, J.; Azpilicueta, L.; López, P.; De Miguel, S.; Ramos, V.; Falcone, F. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment. Electromagn. Biol. Med. 2014, 33, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Plets, D.; Corre, Y. A Novel Method to Assess Human Population Exposure Induced by aWireless Cellular Network. Bioelectromagnetics 2015. [Google Scholar] [CrossRef]
- Plets, D.; Joseph, W.; Aerts, S.; Vermeeren, G.; Varsier, N.; Wiart, J.; Martens, L. Assessment of contribution of other users to own total whole-body RF absorption in train environment. Bioelectromagnetics 2015, 36, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiaramello, E.; Parazzini, M.; Fiocchi, S.; Ravazzani, P.; Wiart, J. Stochastic Dosimetry based on Low Rank Tensor Approximations for the Assessment of Children Exposure to WLAN Source. IEEE J. Electromagn. RF Microwaves Med. Biol. 2018, 2, 131–137. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection ICNIRP Guidelines for Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [CrossRef]
- Ibrani, M.; Hamiti, E.; Ahma, L.; Shala, B. Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios. AEU Int. J. Electron. Commun. 2016, 70, 808–813. [Google Scholar] [CrossRef]
- Schmid, G.; Lager, D.; Preiner, P.; Überbacher, R.; Cecil, S. Exposure caused by wireless technologies used for short-range indoor communication in homes and offices. Radiat. Prot. Dosim. 2007, 124, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Lunca, E.; David, V.; Salceanu, A.; Cretescu, I. Assessing the human exposure due to wireless local area networks in office environments. Environ. Eng. Manag. J. 2012, 11, 385–391. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wen, S.H. Evaluation of E-Field Distribution and Human Exposure for a LTE Femtocell in an Office. Appl. Comput. Electromagn. Soc. J. 2016, 31, 455–467. [Google Scholar]
- IEEE Committee on Electromagnetic Safety (ICES C95.1-2005). IEEE Std IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 2005. Available online: https://standards.ieee.org/standard/C95_1-2005.html (accessed on 17 March 2019).
- Peyman, A.; Khalid, M.; Calderon, C.; Addison, D.; Mee, T.; Maslanyj, M.; Mann, S. Assessment of exposure to electromagnetic fields from wireless computer networks (Wi-Fi) in schools; Results of laboratory measurements. Health Phys. 2011, 100, 594–612. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Mee, T.; Peyman, A.; Addison, D.; Calderon, C.; Maslanyj, M.; Mann, S. Exposure to radio frequency electromagnetic fields from wireless computer networks: Duty factors of Wi-Fi devices operating in schools. Prog. Biophys. Mol. Biol. 2011, 107, 412–420. [Google Scholar] [CrossRef]
- Karipidis, K.; Henderson, S.; Wijayasinghe, D.; Tjong, L.; Tinker, R. Exposure to radiofrequency electromagnetic fields from Wi-Fi in Australian schools. Radiat. Prot. Dosim. 2017, 175, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, C.R.; Redmayne, M.; Billah, B.; Abramson, M.J.; Benke, G. Radiofrequency-electromagnetic field exposures in kindergarten children. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 497–504. [Google Scholar] [CrossRef]
- Kurnaz, C.; Engiz, B.K.; Bozkurt, M.C. Measurement and evaluation of electric field strength levels in primary and secondary schools in a pilot region. Radiat. Environ. Biophys. 2018, 179, 282–290. [Google Scholar] [CrossRef]
- Van Wel, L.; Vermeulen, R.; van Eijsden, M.; Vrijkotte, T.; Kromhout, H.; Huss, A. Radiofrequency Exposure Levels in Amsterdam Schools. Bioelectromagnetics 2017, 38, 397–400. [Google Scholar] [CrossRef]
- Hutter, H.P.; Moshammer, H.; Wallner, P.; Kundi, M. Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup. Environ. Med. 2006, 63, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Bürgi, A.; Frei, P.; Theis, G.; Mohler, E.; Braun-Fahrländer, C.; Fröhlich, J.; Neubauer, G.; Egger, M.; Röösli, M. A model for radiofrequency electromagnetic field predictions at outdoor and indoor locations in the context of epidemiological research. Bioelectromagnetics 2010, 31, 226–236. [Google Scholar] [CrossRef]
- Pachón-García, T.; Fernández-Ortiz, K.; Paniagua-Sánchez, M. Assessment of Wi-Fi radiation in indoor environments characterizing the time & space-varying electromagnetic fields. Measurement 2015, 63, 309–321. [Google Scholar] [CrossRef]
- Kottou, S.; Nikolopoulos, D.; Yannakopoulos, P.H.; Vogiannis, E.; Petraki, E.; Panagiotaras, D.; Koulougliotis, D. Preliminary background indoor EMF measurements in Greece. Phys. Medica 2015, 31, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Hardell, L.; Carlberg, M.; Hedendahl, L. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncol. Lett. 2018, 15, 7871–7883. [Google Scholar] [CrossRef] [Green Version]
- Viel, J.F.; Clerc, S.; Barrera, C.; Rymzhanova, R.; Moissonnier, M.; Hours, M.; Cardis, E. Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: A population-based survey with personal meter. Occup. Environ. Med. 2009, 66, 550–556. [Google Scholar] [CrossRef]
- Sagar, S.; Adem, S.M.; Struchen, B.; Loughran, S.P.; Brunjes, M.E.; Arangua, L.; Dalvie, M.A.; Croft, R.J.; Jerrett, M.; Moskowitz, J.M.; et al. Comparison of radiofrequency electromagnetic field exposure levels in different everyday microenvironments in an international context. Environ. Int. 2018, 114, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Van den Bossche, M.; Brzozek, C.; Bhatt, C.R.; Abramson, M.J.; Benke, G.; Martens, L.; Joseph, W. Representativeness and repeatability of microenvironmental personal and head exposures to radio-frequency electromagnetic fields. Environ. Res. 2018, 162, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Gryz, K.; Karpowicz, J. Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa. Electromagn. Biol. Med. 2015, 35, 265–273. [Google Scholar] [CrossRef]
- Aerts, S.; Plets, D.; Thielens, A.; Martens, L.; Joseph, W. Impact of a small cell on the RF-EMF exposure in a train. Int. J. Environ. Res. Public Health 2015, 12, 2639–2652. [Google Scholar] [CrossRef] [PubMed]
- Plets, D.; Aerts, S.; Vanhecke, K.; Joseph, W.; Martens, L. Comparison of uplink SAR values in train environment for different wireless technologies. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 85–86. [Google Scholar] [CrossRef]
- Harris, L.R.; Zhadobov, M.; Chahat, N.; Sauleau, R. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. Int. J. Microw. Wirel. Technol. 2011, 3, 707–715. [Google Scholar] [CrossRef]
- Leung, S.W.; Diao, Y.; Chan, K.H.; Siu, Y.M.; Wu, Y. Specific absorption rate evaluation for passengers using wireless communication devices inside vehicles with different handedness, passenger counts, and seating locations. IEEE Trans. Biomed. Eng. 2012, 59, 2905–2912. [Google Scholar] [CrossRef]
- De Miguel-Bilbao, S.; Aguirre, E.; Lopez Iturri, P.; Azpilicueta, L.; Roldán, J.; Falcone, F.; Ramos, V. Evaluation of electromagnetic interference and exposure assessment from S-health solutions based on Wi-Fi devices. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Aguirre, E.; Iturri, P.L.; Azpilicueta, L.; De Miguel-Bilbao, S.; Ramos, V.; Gárate, U.; Falcone, F. Analysis of estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in conventional road vehicle environments. Electromagn. Biol. Med. 2015, 34, 19–28. [Google Scholar] [CrossRef]
- Vermeeren, G.; Markakis, I.; Goeminne, F.; Samaras, T.; Martens, L.; Joseph, W. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Prog. Biophys. Mol. Biol. 2013, 113, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Juhász, P.; Bakos, J.; Nagy, N.; Jánossy, G.; Finta, V.; Thuróczy, G. RF personal exposimetry on employees of elementary schools, kindergartens and day nurseries as a proxy for child exposures. Prog. Biophys. Mol. Biol. 2011, 107, 449–455. [Google Scholar] [CrossRef]
- Markakis, I.; Samaras, T. Radiofrequency exposure in Greek indoor environments. Health Phys. 2013, 104, 293–301. [Google Scholar] [CrossRef]
- Verloock, L.; Joseph, W.; Goeminne, F.; Martens, L.; Verlaek, M.; Constandt, K. Assessment of radio frequency exposures in schools, homes, and public places in Belgium. Health Phys. 2014, 107, 503–513. [Google Scholar] [CrossRef]
- Beekhuizen, J.; Vermeulen, R.; van Eijsden, M.; van Strien, R.; Bürgi, A.; Loomans, E.; Guxens, M.; Kromhout, H.; Huss, A. Modelling indoor electromagnetic fields (EMF) from mobile phone base stations for epidemiological studies. Environ. Int. 2014, 67, 22–26. [Google Scholar] [CrossRef]
- Frei, P.; Mohler, E.; Neubauer, G.; Theis, G.; Bürgi, A.; Fröhlich, J.; Braun-Fahrländer, C.; Bolte, J.; Egger, M.; Röösli, M. Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ. Res. 2009, 109, 779–785. [Google Scholar] [CrossRef]
- Roser, K.; Schoeni, A.; Struchen, B.; Zahner, M.; Eeftens, M.; Frohlich, J.; Roosli, M. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ. Int. 2017, 99, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Gallastegi, M.; Huss, A.; Santa-Marina, L.; Aurrekoetxea, J.J.; Guxens, M.; Birks, L.E.; Ibarluzea, J.; Guerra, D.; Roosli, M.; Jimenez-Zabala, A. Children’s exposure assessment of radiofrequency fields: Comparison between spot and personal measurements. Environ. Int. 2018, 118, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R. Radiofrequency exposure from wireless LANS utilizing Wi-Fi technology. Health Phys. 2007, 92, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, C.R.; Thielens, A.; Billah, B.; Redmayne, M.; Abramson, M.J.; Sim, M.R.; Vermeulen, R.; Martens, L.; Joseph, W.; Benke, G. Assessment of personal exposure from radiofrequency- electromagnetic fields in Australia and Belgium using on-body calibrated exposimeters. Environ. Res. 2016, 151, 547–563. [Google Scholar] [CrossRef]
- Joseph, W.; Vermeeren, G.; Verloock, L.; Heredia, M.M.; Martens, L. Characterization of personal RF electromagnetic field exposure and actual absorption for the general public. Health Phys. 2008, 95, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Trcek, T.; Valic, B.; Gajsek, P. Measurements of background electromagnetic fields in human environment. In Proceedings of the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, Ljubljana, Slovenia, 26–30 June 2007; Volume 16. [Google Scholar]
- Thuróczy, G.; Molnár, F.; Jánossy, G.; Nagy, N.; Kubinyi, G.; Bakos, J.; Szabó, J. Personal RF exposimetry in urban area. Ann. Telecommun. Ann. Télécommun. 2008, 63, 87–96. [Google Scholar] [CrossRef]
- Bolte, J.; Pruppers, M.; Kramer, J.; Van der Zande, G.; Schipper, C.; Fleurke, S.; Kluwer, T.; Van Kamp, I.; Kromhout, J. The Dutch exposimeter study: Developing an activity exposure matrix. Epidemiology 2008, 19, s78–s79. [Google Scholar]
Location | RF-EMF Source | Communication Standard | Frequency (MHz) | |
---|---|---|---|---|
Out | Base Station for radio | FM | Frequency Modulation | 100 |
Out | Base Station for radio | DAB | Digital Audio Broadcasting | 220 |
Out | Base Station for television | TETRA | Terrestrial Trunked Radio | 390 |
Out | Base Station for television | Analogue TV | Analogue TV | 174–223 |
Out | Base Station for television | DVB-T/TV | Digital Video Broadcasting–Terrestrial | 470–830 |
Out | Base Station for television | UHF | Ultra-high frequency Television | 470–860 |
Out | BS for mobile telecommunications | GSM900 DL | Global System for Mobile Communications | 900 |
Out | BS for mobile telecommunications | GSM1800 DL | Global System for Mobile Communications | 1800 |
Out | BS for mobile telecommunications | DCS1800 DL | Digital Communication System | 1800 |
Out | Base station/Small cell | UMTS DL | Universal Mobile Telecommunications System | 2100 |
Out | Base station/Small cell | LTE | Long Term Evolution | 2600 |
In | Femtocell | UMTS DL | Universal Mobile Telecommunications System | 2100 |
In | Femtocell | LTE DL | Long Term Evolution | 2600 |
In | Access point | WIFI 2G | Wireless Local Area Networks | 2400 |
In | Access point | WIFI 4G | Wireless Local Area Networks | 2400 |
In | Access point | WiMAX | Worldwide Interoperability for Microwave Access | 3500 |
In | Access point | WIFI 5G | Wireless Local Area Networks | 5500 |
In | Mobile phone/Tablet | GSM900 UL | Global System for Mobile Communications | 900 |
In | Mobile phone/Tablet | GSM1800 UL | Global System for Mobile Communications | 1800 |
In | Mobile phone/Tablet | DCS1800 UL | Digital Communication System | 1800 |
In | Mobile phone/Tablet | UMTS UL | Universal Mobile Telecommunications System | 2100 |
In | Mobile phone/Tablet | LTE UL | Long Term Evolution | 2600 |
In | Cordless phone | DECT | Digital enhanced cordless telecommunications | 1880 |
In | Headphones, computer peripherals | Bluetooth | ||
In | Babyphones |
Location | Population Density of the Area | Measurements | Simulation | ||||||
---|---|---|---|---|---|---|---|---|---|
Urban | Suburban | Rural | Industrial | Not Specified | Spot/Long Term Measurement | Personal Measurement | |||
Public places | Schools | X | X | X | X | X | X | ||
University | X | X | X | ||||||
Kindergarden | X | X | X | ||||||
Crèches | X | X | X | X | X | ||||
Offices | X | X | X | X | X | X | |||
Cinema | X | X | |||||||
Church | X | X | |||||||
Small shop | X | X | X | ||||||
Shopping center | X | X | X | X | |||||
Tourist visitor center | X | X | |||||||
Railway station | X | X | |||||||
Airport | X | X | |||||||
Hotels | X | X | X | ||||||
Health care facilities | X | X | X | ||||||
Other Workplaces | X | X | X | X | X | ||||
Private places | houses | X | X | X | X | X | X | ||
bedroom | X | X | X | X | X | ||||
flat | X | X | X | X | X | X | X | ||
Transportation | train | X | X | X | |||||
bus | X | X | |||||||
metro | X | X | |||||||
car | X | X | |||||||
airplane | X | ||||||||
public transport | X | ||||||||
Other | indoor unspecified | X | X | X | X | ||||
room | X | X | X | ||||||
elevator | X | X | |||||||
corridor | X | X |
Offices | Education Buildings | Residential Buildings | Other Public Buildings | Transportation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Generic | Bus | Train | Tram/Metro | Car/Taxi | |||||||||||||||
Frequency Band (MHz) | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | E (V/m) Mean Values | ||||||||||
min | max | min | max | min | max | min | max | min | max | min | max | min | max | min | max | min | max | ||
Total RF-EMF | 0.07 | 1.14 | 0.07 | 0.54 | 0.13 | 0.81 | 0.15 | 0.99 | 0.14 | 0.97 | 0.14 | 0.75 | 0.23 | 0.97 | 0.26 | 0.62 | 0.18 | 0.86 | |
% of ICNIRP ref. lev. | 0.3% | 4% | 0.3% | 1.9% | 0.5% | 2.9% | 0.5% | 3.5% | 0.5% | 3.5% | 0.5% | 2.7% | 0.8% | 3.5% | 0.9% | 2.3% | 0.6% | 3.1% | |
Reference | [79] | [70] | [52] | [70] | [56] | [59] | [75] | [79] | [62] | [5] | [62] | [81] | [62] | [5] | [2] | [79] | [62] | [61] | |
Broadcasting | |||||||||||||||||||
FM | 88–108 | 0.03 | 0.21 | 0.01 | 0.32 | 0.02 | 0.11 | 0.02 | 0.11 | 0.02 | 0.12 | 0.03 | 0.12 | 0.02 | 0.05 | 0.08 | 0.11 | 0.03 | 0.12 |
Reference | [21] | [70] | [52] | [70] | [83] | [80] | [21] | [21] | [20] | [80] | [62] | [80] | [20] | [5] | [21] | [62] | [25] | [20] | |
TV/DAB | 174–223 | 0.01 | 0.77 | 0.01 | 0.12 | 0.02 | 0.07 | 0.00 | 0.04 | 0.02 | 0.07 | 0.02 | 0.05 | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.07 |
Reference | [44] | [70] | [52] | [51] | [83] | [80] | [21] | [21] | [81] | [21] | [81] | [83] | [21] | [61] | [21] | [21] | [20] | [21] | |
Tetrapol | 380–400 | 0.01 | 0.04 | 0.01 | 0.03 | 0.01 | 0.03 | 0.00 | 0.05 | 0.00 | 0.20 | 0.00 | 0.20 | 0.03 | 0.03 | 0.03 | 0.08 | 0.00 | 0.13 |
Reference | [70] | [44] | [18] | [54] | [70] | [82] | [21] | [21] | [20] | [61] | [20] | [61] | [61] | [61] | [21] | [61] | [21] | [61] | |
Uplink Sources | |||||||||||||||||||
Total UL | 0.02 | 0.89 | n.a. | n.a. | 0.07 | 0.23 | 0.03 | 0.23 | 0.03 | 0.96 | 0.07 | 0.66 | 0.17 | 0.96 | 0.04 | 0.41 | 0.03 | 0.66 | |
Reference | [79] | [83] | [25] | [80] | [21] | [5] | [61] | [5] | [62] | [81] | [62] | [5] | [26] | [5] | [61] | [20] | |||
LTE UL | 800 | n.a. | n.a. | 0.01 | 0.04 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [52] | [18] | |||||||||||||||||
GSM UL | 880–915 | 0.13 | 0.19 | 0.01 | 0.05 | 0.02 | 0.06 | 0.06 | 0.20 | 0.03 | 0.34 | 0.03 | 0.13 | 0.07 | 0.30 | 0.07 | 0.23 | 0.03 | 0.34 |
Reference | [44] | [21] | [52] | [18] | [26] | [21] | [21] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | |
GSM/DCS UL | 1710–1785 | 0.09 | 0.10 | 0.02 | 0.02 | 0.01 | 0.09 | 0.02 | 0.16 | 0.02 | 0.38 | 0.04 | 0.20 | 0.03 | 0.19 | 0.03 | 0.10 | 0.02 | 0.38 |
Reference | [44] | [21] | [18] | [54] | [26] | [21] | [21] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | |
UMTS UL | 1920–1980 | 0.00 | 0.03 | 0.01 | 0.01 | 0.02 | 0.04 | n.a. | n.a. | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.08 | 0.03 | 0.04 | 0.02 | 0.03 |
Reference | [44] | [21] | [54] | [18] | [21] | [26] | [21] | [26] | [26] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | |||
LTE UL | 2500–2570 | n.a. | n.a. | 0.01 | 0.01 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [18] | [18] | |||||||||||||||||
Downlink Sources | |||||||||||||||||||
Total DL | 0.04 | 0.18 | n.a. | n.a. | 0.04 | 0.23 | 0.04 | 0.94 | 0.01 | 0.85 | 0.01 | 0.39 | 0.07 | 0.33 | 0.23 | 0.53 | 0.12 | 0.85 | |
Reference | [83] | [20] | [83] | [79] | [79] | [79] | [62] | [61] | [62] | [79] | [5] | [20] | [5] | [79] | [20] | [61] | |||
LTE DL | 700 | n.a. | n.a. | 0.01 | 0.01 | 0.35 | 1.1 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [52] | [52] | [59] | [59] | |||||||||||||||
GSM DL | 925–960 | 0.02 | 0.34 | 0.03 | 0.21 | 0.05 | 0.82 | 0.05 | 0.22 | 0.02 | 0.22 | 0.03 | 0.07 | 0.02 | 0.06 | 0.02 | 0.22 | 0.02 | 0.07 |
Reference | [26] | [70] | [18] | [70] | [21] | [59] | [21] | [21] | [26] | [63] | [26] | [21] | [26] | [21] | [26] | [63] | [26] | [21] | |
GSM/DCS DL | 1805–1880 | 0.02 | 0.25 | 0.02 | 0.27 | 0.05 | 0.47 | 0.07 | 0.20 | 0.02 | 0.17 | 0.02 | 0.13 | 0.02 | 0.05 | 0.02 | 0.17 | 0.02 | 0.10 |
Reference | [26] | [70] | [52] | [70] | [70] | [59] | [21] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | |
UMTS DL | 2110–2170 | 0.00 | 0.28 | 0.02 | 0.13 | 0.02 | 0.7 | 0.03 | 0.08 | 0.03 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.05 | 0.03 | 0.04 |
Reference | [44] | [70] | [18] | [70] | [21] | [59] | [21] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | [26] | [21] | |
LTE DL | 2620–2690 | n.a. | n.a. | 0.02 | 0.02 | 0.2 | 2.1 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [18] | [18] | [59] | [59] | |||||||||||||||
DECT | 1880–1900 | 0.02 | 0.26 | 0.01 | 0.14 | 0.07 | 0.3 | 0.00 | 0.10 | 0.02 | 0.31 | 0.02 | 0.31 | 0.02 | 0.03 | 0.02 | 0.03 | 0.02 | 0.31 |
Reference | [83] | [44] | [52] | [70] | [70] | [82] | [21] | [21] | [21] | [20] | [26] | [81] | [21] | [20] | [21] | [26] | [20] | [20] | |
WiFi | |||||||||||||||||||
Wifi/WLAN | 2400–2500 | 0.03 | 0.19 | 0.01 | 0.29 | 0.03 | 0.11 | 0.02 | 0.03 | 0.01 | 0.07 | 0.01 | 0.04 | 0.02 | 0.05 | 0.03 | 0.05 | 0.01 | 0.07 |
Reference | [83] | [44] | [52] | [50] | [25] | [21] | [21] | [21] | [61] | [75] | [61] | [26] | [21] | [20] | [61] | [26] | [61] | [75] | |
WiMax | 3400–3800 | 0.02 | 0.02 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [44] | [44] | |||||||||||||||||
Wifi5G | 5150–5850 | 0.13 | 0.25 | 0.00 | 0.03 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Reference | [44] | [36] | [54] | [18] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaramello, E.; Bonato, M.; Fiocchi, S.; Tognola, G.; Parazzini, M.; Ravazzani, P.; Wiart, J. Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. Int. J. Environ. Res. Public Health 2019, 16, 955. https://doi.org/10.3390/ijerph16060955
Chiaramello E, Bonato M, Fiocchi S, Tognola G, Parazzini M, Ravazzani P, Wiart J. Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. International Journal of Environmental Research and Public Health. 2019; 16(6):955. https://doi.org/10.3390/ijerph16060955
Chicago/Turabian StyleChiaramello, Emma, Marta Bonato, Serena Fiocchi, Gabriella Tognola, Marta Parazzini, Paolo Ravazzani, and Joe Wiart. 2019. "Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review" International Journal of Environmental Research and Public Health 16, no. 6: 955. https://doi.org/10.3390/ijerph16060955
APA StyleChiaramello, E., Bonato, M., Fiocchi, S., Tognola, G., Parazzini, M., Ravazzani, P., & Wiart, J. (2019). Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. International Journal of Environmental Research and Public Health, 16(6), 955. https://doi.org/10.3390/ijerph16060955