Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Analysis
3. Results
3.1. Descriptive Results
3.2. Choice of the Optimal Number of Clusters and Evaluation of Clustering Performance
3.3. Results of Clustering Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wertheimer, N.; Leeper, E.D. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979, 109, 273–284. [Google Scholar] [CrossRef]
- Greenland, S.; Sheppard, A.R.; Kaune, W.T.; Poole, C.; Kelsh, M.A. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology 2000, 11, 624–634. [Google Scholar] [CrossRef]
- Ahlbom, A.; Day, N.; Feychting, M.; Roman, E.; Skinner, J.; Dockerty, J.; Linet, M.; McBride, M.; Michaelis, J.; Olsen, J.H.; et al. A pooled analysis of magnetic fields and childhood leukemia. Br. J. Cancer 2000, 83, 692–698. [Google Scholar] [CrossRef]
- Kheifets, L.; Ahlbom, A.; Crespi, C.M.; Draper, G.; Hagihara, J.; Lowenthal, R.M.; Mezei, G.; Oksuzyan, S.; Schüz, J.; Swanson, J.; et al. Pooled analysis of recent studies on magnetic fields and childhood leukemia. Br. J. Cancer 2010, 103, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Bedja, M.; Magne, I.; Souques, M.; Lambrozo, J.; Le Brusquet, L.; Fleury, G.; Azoulay, A.; Deschamps, F.; Carlsberg, A. Methodology of a study on the French population exposure to 50 Hz magnetic fields. Radiat. Prot. Dosim. 2010, 142, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Magne, I.; Souques, M.; Bureau, I.; Duburcq, A.; Remy, E.; Lambrozo, J. Exposure of children to extremely low frequency magnetic fields in France: Results of the EXPERS study. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 505–512. [Google Scholar] [CrossRef]
- Schüz, J.; Dasenbrock, C.; Ravazzani, P.; Röösli, M.; Schär, P.; Bounds, P.L.; Erdmann, F.; Borkhardt, A.; Cobaleda, C.; Fedrowitz, M.; et al. Extremely low-frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium. Bioelectromagnetics 2016, 37, 183–189. [Google Scholar] [CrossRef]
- Forssén, U.M.; Ahlbom, A.; Feychting, M. Relative contribution of residential and occupational magnetic field exposure over twenty-four hours among people living close to and far from a power line. Bioelectromagnetics 2002, 23, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Vistnes, A.I.; Ramberg, G.B.; Bjørnevik, L.R.; Tynes, T.; Haldorsen, T. Exposure of children to residential magnetic fields in Norway: Is proximity to power lines an adequate predictor of exposure? Bioelectromagnetics 1997, 18, 47–57. [Google Scholar] [CrossRef]
- Friedman, D.R.; Hatch, E.E.; Tarone, R.; Kaune, W.T.; Kleinerman, R.A.; Wacholder, S.; Boice, J.D., Jr.; Linet, M.S. Childhood exposure to magnetic fields: Residential area measurements compared to personal dosimetry. Epidemiology 1996, 7, 151–155. [Google Scholar] [PubMed]
- Foliart, D.E.; Iriye, R.N.; Tarr, K.J.; Silva, J.M.; Kavet, R.; Ebi, K.L. Alternative magnetic field exposure metrics: Relationship to TWA, appliance use, and demographic characteristics of children in a leukemia survival study. Bioelectromagnetics 2001, 22, 574–580. [Google Scholar] [CrossRef]
- Foliart, D.E.; Iriye, R.N.; Silva, J.M.; Mezei, G.; Tarr, K.J.; Ebi, K.L. Correlation of year-to-year magnetic field exposure metrics among children in a leukemia survival study. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Kaune, W.T. Assessing human exposure to power-frequency electric and magnetic fields. Environ. Health Perspect. 1993, 101 (Suppl. 4), 121–133. [Google Scholar]
- Deadman, J.E.; Armstrong, B.G.; McBride, M.L.; Gallagher, R.; Thériault, G. Exposures of children in Canada to 60-Hz magnetic and electric fields. Scand. J. Work Environ. Health 1999, 25, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, M.L.; Gallagher, R.P.; Thériault, G.; Armstrong, B.G.; Tamaro, S.; Spinelli, J.J.; Deadman, J.E.; Fincham, S.; Robson, D.; Choi, W. Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am. J. Epidemiol. 1999, 149, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Mezei, G.; Sung, F.C.; Silva, M.; Chen, P.C.; Lee, P.C.; Chen, L.M. Survey of residential extremely-low-frequency magnetic field exposure among children in Taiwan. Environ. Int. 2007, 33, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.F.; Li, C.Y.; Wang, J.D. Analysis of individual- and school-level clustering of power frequency magnetic fields. Bioelectromagnetics 2008, 29, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.H.; Ju, M.N.; Myung, S.H.; Shin, K.Y.; Hwang, G.H.; Park, J.H. Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age. J. Electr. Eng. Technol. 2012, 7, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Halgamuge, M.N. Machine Learning for Bioelectromagnetics: Prediction Model using Data of Weak Radiofrequency Radiation Effect on Plants. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 223–235. [Google Scholar]
- Šarolić, A.; Matić, P. Wireless LAN Electromagnetic Field Prediction for Indoor Environment Using Artificial Neural Network. Automatika 2010, 51, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Grellier, J.; Ravazzani, P.; Cardis, E. Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe. Environ. Int. 2014, 62, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer Nature: Basel, Switzerland, 2009. [Google Scholar]
- David, A.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990. [Google Scholar]
- World Health Organization. Extremely Low Frequency Fields; Environmental Health Criteria Series, No. 238; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- Brune, D.; Hellborg, R.; Persson, B.R.R.; Pääkkönen, R. Radiation at Home, Outdoors and in the Workplace; Scandinavian Science Publisher: Oslo, Norway, 2001. [Google Scholar]
- Ippolito, M.G.; Puccio, A.; Ala, G.; Ganci, S. Attenuation of Low Frequency Magnetic Fields Produced by HV Underground Power Cables. In Proceedings of the 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 1–4 September 2015; pp. 1–5. [Google Scholar]
Network Type | Number of Indoor Measurements (% of All Indoor Measurements) 1 | Number of Power Cables, Power Lines and Substations | |
---|---|---|---|
Max | Mean | ||
UND_low | 1198 (66.8%) | 59 | 3.9 |
UND_mid | 820 (45.7%) | 27 | 1.3 |
UND_high | 5 (0.3%) | 2 | 0.0 |
UND_extra-high | 7 (0.4%) | 2 | 0.0 |
OVHD_low | 786 (43.8%) | 16 | 1.1 |
OVHD_mid | 58 (3.2%) | 5 | 0.0 |
OVHD_high | 10 (0.6%) | 1 | 0.0 |
OVHD_extra-high | 9 (0.5%) | 2 | 0.0 |
OVDH_ultra-high | 4 (0.2%) | 3 | 0.0 |
Substation | 246 (13.7%) | 2 | 0.1 |
Network Type | UND | OVHD | Substations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low | Mid | High | Extra-High | Low | Mid | High | Extra-High | Ultra-High | |||
UND | low | 317 (17.7) 1 | |||||||||
mid | 696 (38.8) | 23 (1.3) | |||||||||
high | 4 (0.2) | 5 (0.3) | 0 | ||||||||
extra-high | 7 (0.4) | 6 (0.3) | 0 | 0 | |||||||
OVHD | low | 431 (24.0) | 352 (19.6) | 4 (0.2) | 1 (0.1) | 228 (12.7) | |||||
mid | 22 (1.2) | 11 (0.6) | 0 | 0 | 41 (2.3) | 4 (0.2) | |||||
high | 4 (0.2) | 3 (0.2) | 0 | 0 | 6 (0.3) | 2 (0.1) | 1 (0.1) | ||||
extra-high | 5 (0.3) | 2 (0.1) | 0 | 0 | 5 (0.3) | 0 | 1 (0.1) | 0 | |||
ultra-high | 2 (0.1) | 1 (0.1) | 0 | 0 | 1 (0.1) | 0 | 0 | 2 (0.1) | 0 | ||
Substation | 228 (12.7) | 237 (13.2) | 1 (0.1) | 1 (0.1) | 87 (4.9) | 11 (0.6) | 2 (0.1) | 2 (0.1) | 0 | 0 |
Cluster # | Number of Partitions | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
1 | 269 | 10 | 9 | 7 | 3 |
2 | 1524 | 267 | 10 | 9 | 5 |
3 | 1516 | 267 | 10 | 7 | |
4 | 1507 | 264 | 10 | ||
5 | 1503 | 268 | |||
6 | 1500 |
Cluster # | B (μT) | UND (N) | OVHD (N) | Substation (N) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low | Mid | High | Extra-High | Low | Mid | High | Extra-High | Ultra-High | |||
1 | 0.146 | 2.4 | 0.9 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.8 | 0.2 |
2 | 0.053 | 1.2 | 1.3 | 0.0 | 0.0 | 1.3 | 0.2 | 1.0 | 0.1 | 0.0 | 0.2 |
3 | 0.025 | 11.4 | 4.6 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 |
4 | 0.019 | 2.6 | 0.7 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tognola, G.; Bonato, M.; Chiaramello, E.; Fiocchi, S.; Magne, I.; Souques, M.; Parazzini, M.; Ravazzani, P. Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children. Int. J. Environ. Res. Public Health 2019, 16, 1230. https://doi.org/10.3390/ijerph16071230
Tognola G, Bonato M, Chiaramello E, Fiocchi S, Magne I, Souques M, Parazzini M, Ravazzani P. Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children. International Journal of Environmental Research and Public Health. 2019; 16(7):1230. https://doi.org/10.3390/ijerph16071230
Chicago/Turabian StyleTognola, Gabriella, Marta Bonato, Emma Chiaramello, Serena Fiocchi, Isabelle Magne, Martine Souques, Marta Parazzini, and Paolo Ravazzani. 2019. "Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children" International Journal of Environmental Research and Public Health 16, no. 7: 1230. https://doi.org/10.3390/ijerph16071230
APA StyleTognola, G., Bonato, M., Chiaramello, E., Fiocchi, S., Magne, I., Souques, M., Parazzini, M., & Ravazzani, P. (2019). Use of Machine Learning in the Analysis of Indoor ELF MF Exposure in Children. International Journal of Environmental Research and Public Health, 16(7), 1230. https://doi.org/10.3390/ijerph16071230