Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Soil Samples
2.2. Glasshouse Experiment
2.3. Preparation of Acid Rain
2.4. Leaching Experiment
2.5. Data Processing and Statistical Methods
3. Results and Discussion
3.1. Effects of Chelating Agents on Plant Growth and Extraction of HMs
3.1.1. Effects of HMs and Chelating Agents on the Growth of Maize
3.1.2. Enrichment and Transfer of HMs by Chelators
3.2. Leaching Characteristics of Heavy Metals under Rainfall Conditions
3.2.1. Effect of Acid Rain on the Total Amount of Leached Heavy Metals
3.2.2. Effect of Chelating Agent on the Total Amount of Leached Pb
3.2.3. Effect of Chelating Agent on the Total Amount of Leached Tl
3.2.4. Change in the Leaching Process of Heavy Metals
3.2.5. Effect of Chelating on Pb Concentration in the Leachate
3.2.6. Effect of Chelating on Tl Concentration in the Leachate
3.2.7. Relation between Glasshouse and Leaching Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China. Int. J. Environ. Res. Public Health 2019, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the Action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Sallah-Ud-Din, R.; Farid, M.; Saeed, R.; Ali, S.; Rizwan, M.; Tauqeer, H.M.; Bukhari, S.A.H. Citric Acid Enhanced the Antioxidant Defense System and Chromium Uptake by Lemna Minor L. Grown in Hydroponics under Cr Stress. Environ. Sci. Pollut. Res. 2017, 24, 17669–17678. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xiang, W.; Ma, Y.E.; Lei, P.; Tian, D.; Deng, X.; Yan, W.; Fang, X. Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China. Int. J. Environ. Res. Public Health 2015, 12, 1726–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugschwandtner, R.W.; Tlustoš, P.; Komárek, M.; Száková, J. JPhytoextraction of Pb and Cd from a Contaminated Agricultural Soil Using Different Edta Application Regimes: Laboratory Versus Field Scale Measures of Efficiency. Geoderma 2008, 144, 446–454. [Google Scholar] [CrossRef]
- Miller, G.; Begonia, G.; Begonia, M.F. Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania Exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil. Int. J. Environ. Res. Public Health 2011, 8, 2401–2417. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, X.L.; Hu, J.; Li, J.; Wang, Z.L.; Han, G.; Li, S.-L.; Liu, C.-Q. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int. J. Environ. Res. Public Health 2018, 15, 2857. [Google Scholar] [CrossRef] [PubMed]
- January, M.C.; Cutright, T.J.; van Keulen, H.; Wei, R. Hydroponic Phytoremediation of Cd, Cr, Ni, as, and Fe: Can Helianthus Annuus Hyperaccumulate Multiple Heavy Metals? Chemosphere 2008, 70, 531–537. [Google Scholar] [CrossRef]
- Khan, I.; Iqbal, M.; Ashraf, M.Y.; Ashraf, M.A.; Ali, S. Organic Chelants-Mediated Enhanced Lead (Pb) Uptake and Accumulation Is Associated with Higher Activity of Enzymatic Antioxidants in Spinach (Spinacea Oleracea L.). J. Hazard. Mater. 2016, 317, 352–361. [Google Scholar] [CrossRef]
- Chigbo, C. Effect of Soil Aging on the Phytoremediation Potential of Zea Mays in Chromium and Benzo a Pyrene Contaminated Soils. Bull. Environ. Contam. Toxicol. 2015, 94, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.; Ali, S.; Ishaque, W.; Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Dawood, M.; Gill, R.A.; Abbas, F. Exogenous Application of Ethylenediamminetetraacetic Acid Enhanced Phytoremediation of Cadmium by Brassica Napus L. Int. J. Environ. Sci. Technol. 2015, 12, 3981–3992. [Google Scholar] [CrossRef]
- Vargas, C.; Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Moliner, A. Phytoremediation of Cu and Zn by Vetiver Grass in Mine Soils Amended with Humic Acids. Environ. Sci. Pollut. Res. 2016, 23, 13521–13530. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, W.S.; Sarem, S.M. The Potential of Chrysanthemum and Pelargonium for Phytoextraction of Lead-Contaminated Soils. Jordan J. Civ. Eng. 2010, 4, 409–416. [Google Scholar]
- Kede, M.; Correia, F.; Conceição, P.; Junior, S.; Marques, M.; Moreira, J.; Pérez, D. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using Tclp, Bcr and Earthworms. Int. J. Environ. Res. Public Health 2014, 11, 11528–11540. [Google Scholar] [CrossRef]
- Schmidt, U. Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals. J. Environ. Qual. 2003, 32, 1939–1954. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.F.; Wei, Z.B.; Qiu, J.R.; Wu, Q.T.; Zhou, J.L. Differences between Corn Cultivars in Accumulation and Translocation of Heavy Metals. J. Ecol. Rural Environ. 2010, 26, 367–371. (In Chinese) [Google Scholar]
- Tian, Y.; Zhang, H.; Guo, W.; Chen, Z.; Wei, X.; Zhang, L.; Han, L.; Dai, L. Assessment of the Phytoremediation Potential of Bioenergy Crop Maize (Zea Mays) in Soil Contaminated by Cadmium: Morphology, Photosynthesis and Accumulation. Fresenius Environ. Bull. 2012, 21, 3575–3581. [Google Scholar]
- Meers, E.; van Slycken, S.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Laing, G.D.; Witters, N.; Thewys, T.; Tack, F.M.G. The Use of Bio-Energy Crops (Zea Mays) for ‘Phytoattenuation’ of Heavy Metals on Moderately Contaminated Soils: A Field Experiment. Chemosphere 2010, 78, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Nowack, B.; Schulin, R.; Robinson, B.H. Critical Assessment of Chelant-Enhanced Metal Phytoextraction. Environ. Sci. Technol. 2006, 40, 5225–5232. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Zia-ur-Rehman, M.; Abbas, Z.; Hannan, F. Use of Maize (Zea Mays L.) for Phytomanagement of Cd-Contaminated Soils: A Critical Review. Environ. Geochem. Health 2017, 39, 259–277. [Google Scholar] [CrossRef]
- Evangelou, M.W.; Ebel, M.; Schaeffer, A. Chelate Assisted Phytoextraction of Heavy Metals from Soil. Effect, Mechanism, Toxicity, and Fate of Chelating Agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef]
- Nörtemann, B. Biodegradation of Chelating Agents: Edta, Dtpa, Pdta, Nta, and Edds. ACS Symp. Ser. 2005, 910, 150–170. [Google Scholar]
- Yang, X.Y.; Yang, J.S.; Huang, Z.; Xu, L.G. Influence of Chelators Application on the Growth and Lead Accumulation of Maize Seedlings in Pb- Contaminated Soils. J. Agro-Environ. Sci. 2007, 26, 482–486. (In Chinese) [Google Scholar]
- Zhao, S.; Shen, Z.; Duo, L. Heavy Metal Uptake and Leaching from Polluted Soil Using Permeable Barrier in Dtpa-Assisted Phytoextraction. Environ. Sci. Pollut. Res. 2015, 22, 5263–5270. [Google Scholar] [CrossRef]
- Kim, D.J.; Park, B.C.; Ahn, B.K.; Lee, J.H. Thallium Uptake and Translocation in Barley and Sunflower Grown in Hydroponic Conditions. Int. J. Environ. Res. 2016, 10, 575–582. [Google Scholar]
- Magdziak, Z.; Mleczek, M.; Rutkowski, P.; Golinski, P. Diversity of Low-Molecular Weight Organic Acids Synthesized by Salix Growing in Soils Characterized by Different Cu, Pb and Zn Concentrations. Acta Physiol. Plant. 2017, 39, 137. [Google Scholar] [CrossRef]
- Guo, D.; Ali, A.; Ren, C.; Du, J.; Li, R.; Lahori, A.H.; Xiao, R.; Zhang, Z.; Zhang, Z. Edta and Organic Acids Assisted Phytoextraction of Cd and Zn from a Smelter Contaminated Soil by Potherb Mustard (Brassica Juncea, Coss) and Evaluation of Its Bioindicators. Ecotoxicol. Environ. Saf. 2019, 167, 396–403. [Google Scholar] [CrossRef]
- Wu, L.H.; Luo, Y.M.; Xing, X.R.; Christie, P. Edta-Enhanced Phytoremediation of Heavy Metal Contaminated Soil with Indian Mustard and Associated Potential Leaching Risk. Agric. Ecosyst. Environ. 2004, 102, 307–318. [Google Scholar] [CrossRef]
- Hu, P.; Yang, B.; Dong, C.; Chen, L.; Cao, X.; Zhao, J.; Wu, L.; Luo, Y.; Christie, P. Assessment of Edta Heap Leaching of an Agricultural Soil Highly Contaminated with Heavy Metals. Chemosphere 2014, 117, 532–537. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, D.; Lai, A.; Liu, G.; Liu, L.; Long, J.; Zhang, H.; Chen, Y. Leaching Characteristics of Edta-Enhanced Phytoextraction of Cd and Pb by Zea Mays L. In Different Particle-Size Fractions of Soil Aggregates Exposed to Artificial Rain. Environ. Sci. Pollut. Res. 2017, 24, 1845–1853. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, D.; Liu, L.; Tan, Z.; Lai, A.; Liu, G.; Li, J.; Long, J.; Huang, X.; Chen, Y. Leaching Variations of Heavy Metals in Chelator-Assisted Phytoextraction by Zea Mays L. Exposed to Acid Rainfall. Environ. Sci. Pollut. Res. 2017, 24, 24409–24418. [Google Scholar] [CrossRef]
- Xue, L.M.; Liu, Z.C.; Yin, Y.; Sun, Y.Y.; Guo, H.Y. Microwave-Enhanced Remediation of Cd, Pb and Zn Contaminated Soil Using Edds as a Leaching Agent. J. Agro-Environ. Sci. 2013, 32, 1552–1557. (In Chinese) [Google Scholar]
- Ning, Z.; He, L.; Xiao, T.; Márton, L. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.). Int. J. Phytoremediation 2015, 17, 1097–1104. [Google Scholar] [CrossRef]
- Bareen, F.E.; Saeed, S.; Afrasiab, H. Differential Mobilization and Metal Uptake Versus Leaching in Multi-Metal Soil Columns Using Edta and Three Metal Bioaccumulators. Int. J. Phytoremediation 2017, 19, 1109–1117. [Google Scholar] [CrossRef]
- Karbowska, B.; Rębiś, T.; Milczarek, G. Electrode Modified by Reduced Graphene Oxide for Monitoring of Total Thallium in Grain Products. Int. J. Environ. Res. Public Health 2018, 15, 653. [Google Scholar] [CrossRef]
- Xiao, T.F.; Guha, J.; Boyle, D.; Liu, C.Q.; Zheng, B.S.; Wilson, G.C.; Rouleau, A.; Chen, J. Naturally Occurring Thallium: A Hidden Geoenvironmental Health Hazard? Environ. Int. 2004, 30, 501–507. [Google Scholar] [CrossRef]
- Xiao, T.F.; Guha, J.; Boyle, D.; Liu, C.Q.; Chen, J.G. Environmental Concerns Related to High Thallium Levels in Soils and Thallium Uptake by Plants in Southwest Guizhou, China. Sci. Total Environ. 2004, 318, 223–244. [Google Scholar] [CrossRef]
- Voegelin, A.; Pfenninger, N.; Petrikis, J.; Majzlan, J.; Plötze, M.; Senn, A.C.; Mangold, S.; Steininger, R.; Goettlicher, J. Thallium Speciation and Extractability in a Thallium- and Arsenic-Rich Soil Developed from Mineralized Carbonate Rock. Environ. Sci. Technol. 2015, 49, 5390–5398. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Y.; Xie, X.; Qi, J.; Lippold, H.; Luo, D.; Wang, C.; Su, L.; He, L.; et al. Thallium Transformation and Partitioning During Pb-Zn Smelting and Environmental Implications. Environ. Pollut. 2016, 212, 77–89. [Google Scholar] [CrossRef]
- Liu, L.W. Research on the Remediation of Combined Contamination of Heavy Metals and Ten Bromine Biphenyl Ether by Different Zea Mays L. Master’s Thesis, Jinan University, Guangzhou, China, 2011. (In Chinese). [Google Scholar]
- Qin, P.; Du, Y.D.; Liu, J.L.; Song, L.L.; Liu, A.J.; Wang, Q.Q. Distributional Characteristics of Acid Rain and Its Affecting Factors in Guangdong Province. J. Trop. Meteorol. 2006, 22, 297–300. (In Chinese) [Google Scholar]
- Diniz, C.V.; Doyle, F.M.; Ciminelli, V.S.T. Effect of Ph on the Adsorption of Selected Heavy Metal Ions from Concentrated Chloride Solutions by the Chelating Resin Dowex M-4195. Sep. Sci. Technol. 2002, 37, 3169–3185. [Google Scholar] [CrossRef]
- Farrah, H.; Pickering, W.F. Ph Effects in the Adsorption of Heavy Metal Ions by Clays. Chem. Geol. 1979, 25, 317–326. [Google Scholar] [CrossRef]
- Boekhold, A.E.; Temminghoff, E.J.M.; van der zee, S.E.A.T.M. Influence of Electrolyte Composition and Ph on Cadmium Sorption by an Acid Sandy Soil. J. Soil Sci. 1993, 44, 85–96. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-Chemistrical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Xia, J.M.; Dang, Z.; Chen, N.C.; Xu, S.G.; Xie, Z.Y. Toc and Heavy Metals Dynamic in Contaminated Soil Solution and Their Correlations with the Addition of Chelating Agents. Environ. Chem. 2007, 26, 602–605. (In Chinese) [Google Scholar]
- Zheng, Y.M.; Zhong, W.; Peng, X.Y.; Xue, J.B.; Ma, Q.H.; Cai, Y. Chemical Characteristics of Rainwater at Yunfu City in Guangdong Province. J. South China Norm. Univ. (Nat. Sci. Ed.) 2009, 1, 111–115. (In Chinese) [Google Scholar]
- Luo, C.L.; Shen, Z.G.; Li, X.D. Enhanced Phytoextraction of Cu, Pb, Zn and Cd with Edta and Edds. Chemosphere 2005, 59, 1–11. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, P.; Wang, Z.C.; Chen, Y.H. Characterization of Kale (Brassica Oberacea Var Acephala) under Thallium Stress by in Situ Attenuated Total Reflection Ftir. Spectrosc. Spectr. Anal. 2009, 29, 119–121. (In Chinese) [Google Scholar]
- Pu, G.Z.; Zhang, D.N.; Zeng, D.J.; Xu, G.P.; Huang, Y.Q. Effects of Thallium Stress on Photosynthesis, Chlorophyll Fluorescence Parameters and Antioxidant Enzymes Activities of Coix Lacryma-Jobi. J. Environ. Sci. Eng. A 2017, 6, 15–21. [Google Scholar]
- Boominathan, R.; Doran, P.M. Organic Acid Complexation, Heavy Metal Distribution and the Effect of Atpase Inhibition in Hairy Roots of Hyperaccumulator Plant Species. J. Biotechnol. 2003, 101, 131–146. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Bybordi, A. Effect of Organic Acids on Heavy-Metal Uptake and Growth of Canola Grown in Contaminated Soil. Commun. Soil Sci. Plant Anal. 2014, 45, 1715–1725. [Google Scholar] [CrossRef]
- Luo, C.L.; Shen, Z.G.; Baker, A.J.; Li, X.D. A Novel Strategy Using Biodegradable Edds for the Chemically Enhanced Phytoextraction of Soils Contaminated with Heavy Metals. Plant Soil 2006, 285, 67–80. [Google Scholar] [CrossRef]
- Luo, C.; Shen, Z.; Lou, L.; Li, X. Edds and Edta-Enhanced Phytoextraction of Metals from Artificially Contaminated Soil and Residual Effects of Chelant Compounds. Environ. Pollut. 2006, 144, 862–871. [Google Scholar] [CrossRef]
- He, P.P.; Lv, X.Z.; Wang, G.Y. Effects of Se and Zn Supplementation on the Antagonism against Pb and Cd in Vegetables. Environ. Int. 2004, 30, 167–172. [Google Scholar] [CrossRef]
- Renkema, H.; Koopmans, A.; Hale, B.; Berkelaar, E. Thallium and Potassium Uptake Kinetics and Competition Differ between Durum Wheat and Canola. Environ. Sci. Pollut. Res. 2015, 22, 2166–2174. [Google Scholar] [CrossRef]
- Chotpantarat, S.; Ong, S.K.; Sutthirat, C.; Osathaphan, K. Competitive Sorption and Transport of Pb2+, Ni2+, Mn2+, and Zn2+ in Lateritic Soil Columns. J. Hazard. Mater. 2011, 190, 391–396. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, X.D.; Shen, Z.G. Leaching and Uptake of Heavy Metals by Ten Different Species of Plants during an Edta-Assisted Phytoextraction Process. Chemosphere 2004, 57, 187–196. [Google Scholar] [CrossRef]
- SAC, the Standardization Administration of China. Gb/T 14848-2017, Standard for Groundwater Quality; The Standardization Administration of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Chen, X.X. Leaching and Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil by Zea Mays L. And the Impact on Underground Water. Master’s Thesis, Guangzhou University, Guangzhou, China, 2018. (In Chinese). [Google Scholar]
- SAC, the Standardization Administration of China. Gb5749-2006, Standard for Drinking Water Quality; The Standardization Administration of the People’s Republic of China: Beijing, China, 2006. [Google Scholar]
Physicochemical Properties | |
---|---|
pHwater | 4.5 |
pHKCl | 4.2 |
Clay (%) <0.002 mm | 16 |
Silt (%) 0.02–0.002 mm | 33 |
Sand (%) >0.02 mm | 51 |
Texture | Clay loam |
Organic matter (g kg−1) | 15.4 |
Cation exchange capacity (cmol kg−1) | 3.3 |
Bulk density (g cm−3) | 1.28 |
Total N (%) | 0.08 |
Available N (mg kg−1) | 37.8 |
Available P (mg kg−1) | 0.9 |
Available K (mg kg−1) | 12.1 |
Background total metal concentration (mg kg−1) | |
Tl | 0.63 |
Pb | 52.30 |
Treatment | Shoot Concentrations (mg kg−1 Plant Tissue) | Root Concentrations (mg kg−1 Plant Tissue) | BCF * | Uptake (mg Shoot−1) | TF * |
---|---|---|---|---|---|
Pb | Pb | Pb | Pb | Pb | |
PbZ-0 | 192.66 ± 27.80 a | 587.85 ± 67.47 a | 0.39 a | 0.47 a | 0.33 a |
PbZ-DTPA | 243.92 ± 32.70 b | 504.87 ± 76.57 b | 0.49 b | 0.59 b | 0.48 b |
PbZ-OX | 204.69 ± 22.98 a | 539.88 ± 49.33 a | 0.41 a | 0.50 c | 0.38 c |
Pb+TlZ-0 | 94.26 ± 12.27 c | 501.67 ± 40.59 b | 0.19 c | 0.07 d | 0.19 d |
Pb+TlZ-DTPA | 138.26 ± 22.15 d | 330.16 ± 44.91 c | 0.28 d | 0.17 e | 0.42 c |
Pb+TlZ-OX | 128.05 ± 17.04 d | 336.09 ± 16.40 c | 0.26 d | 0.13 f | 0.38 c |
Treatment | Shoot Concentrations (mg kg−1 Plant Tissue) | Root Concentrations (mg kg−1 Plant Tissue) | BCF * | Uptake (mg Shoot−1) | TF * |
---|---|---|---|---|---|
Tl | Tl | Tl | Tl | Tl | |
TlZ-0 | 94.00 ± 18.55 a | 372.46 ± 28.02 a | 18.80 a | 0.09 a | 0.25 a |
TlZ-DTPA | 109.75 ± 1.38 b | 433.45 ± 14.28 b | 21.95 b | 0.15 b | 0.25 a |
TlZ-OX | 104.72 ± 10.72 a | 430.81 ± 27.01 b | 20.95 b | 0.12 c | 0.24a |
Pb+TlZ-0 | 104.97 ± 13.41 a | 246.89 ± 31.32 c | 20.99 b | 0.07 d | 0.43 b |
Pb+TlZ-DTPA | 120.99 ± 11.61 c | 326.68 ±30.59 a | 24.20 c | 0.11 c | 0.37 c |
Pb+TlZ-OX | 108.23 ± 6.91 b | 299.48 ± 37.41 d | 21.65 b | 0.10 c | 0.36 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Luo, D.; Chen, X.; Wei, L.; Liu, Y.; Wu, Q.; Xiao, T.; Mai, X.; Liu, G.; Liu, L. Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil. Int. J. Environ. Res. Public Health 2019, 16, 1328. https://doi.org/10.3390/ijerph16081328
Huang X, Luo D, Chen X, Wei L, Liu Y, Wu Q, Xiao T, Mai X, Liu G, Liu L. Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil. International Journal of Environmental Research and Public Health. 2019; 16(8):1328. https://doi.org/10.3390/ijerph16081328
Chicago/Turabian StyleHuang, Xuexia, Dinggui Luo, Xiangxin Chen, Lezhang Wei, Yu Liu, Qihang Wu, Tangfu Xiao, Xiaotao Mai, Guowei Liu, and Lirong Liu. 2019. "Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil" International Journal of Environmental Research and Public Health 16, no. 8: 1328. https://doi.org/10.3390/ijerph16081328
APA StyleHuang, X., Luo, D., Chen, X., Wei, L., Liu, Y., Wu, Q., Xiao, T., Mai, X., Liu, G., & Liu, L. (2019). Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil. International Journal of Environmental Research and Public Health, 16(8), 1328. https://doi.org/10.3390/ijerph16081328