Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Gas Sampling and Analysis
2.3. Yield and Components
2.4. Water Consumption and Water Productivity
2.5. Data Analysis
3. Results and Analysis
3.1. CH4 Emissions
3.2. N2O Emissions
3.3. Yield and Its Components
3.4. Water Consumption
3.5. Comprehensive Assessment of GWP, GHGI, and WP
4. Discussion
4.1. Effects of Different Water and N Management Types on CH4 and N2O
4.2. Effects of Different Water and N Management Types on Yield, WP, and GWP
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, S.K.; Plattner, G.K.; Nauels, A.; Xia, Y.; Stocker, T.F. Climate change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Comput. Geom. 2007, 18, 95–123. [Google Scholar]
- Xia, L.; Xia, Y.; Li, B.; Wang, J.; Wang, S.; Zhou, W. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric. Ecosyst. Environ 2016, 231, 24–33. [Google Scholar] [CrossRef]
- Abdalla, M. Emissions of nitrous oxide from agriculture: Responses to management and climate change. ACS Symposium 2011, 24, 343–370. [Google Scholar]
- IPCC. Annex V: Contributors to the IPCC WGI fifth assessment report. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1477–1496. [Google Scholar]
- Hussain, S.; Peng, S.; Fahad, S.; Khaliq, A.; Huang, J.; Cui, K.; Nie, L. Rice management interventions to mitigate greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 3342–3360. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Tao, X.; Peng, X.; Li, N.; Zhu, Z. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans. Chin. Soc. Agric. Eng. 2008, 24, 269–273. [Google Scholar]
- Wang, M.; Zhang, Z.; Lü, C.; Lin, Y. CH4 and N2O emissions from rice paddy field and their GWPs research in different irrigation modes in cold region. Res. Soil Water Conserv. 2016, 23, 95–100. [Google Scholar]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; Andreas de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Xiong, Z.; Khalil, M.; Xing, G. Water regime–nitrogen fertilizer–straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agric. Ecosyst. Environ. 2011, 141, 437–446. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Waqas, M.A.; Cai, W.; Guo, C.; Zhou, S.; Su, R.; Qin, X.; et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 2018, 315, 1–10. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, G.; Yan, X.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Chang. Biol. 2012, 18, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Z.; Hou, H.J.; Xu, J.Z.; Mao, Z.; Aabudu, S.; Luo, Y.F. Nitrous oxide emissions from paddy fields under different water managements in Southeast China. Paddy Water Environ. 2011, 9, 1–9. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; Luo, Y.; Li, D. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys. Chem. Earth 2012, 53, 30–37. [Google Scholar] [CrossRef]
- Heilongjiang Statistical Bureau. Heilongjiang Statistical Yearbook 2016; China Statistics Publishing House: Beijing, China, 2016. [Google Scholar]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Fu, Z.; Long, P.; Liu, Y.; Zhong, J.; Long, W. Effect of water and nitrogenous fertilizer coupling on CH4 and N2O emission from double-season rice paddy field. Environ. Sci. 2015, 36, 3365–3372. [Google Scholar]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Pan, J.; Tian, K. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in South China. Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- Wu, J.; Ji, X.; Peng, H.; Xie, Y.; Guan, D.; Tian, F.; Zhu, J.; Huo, L. Effects of different organic fertilizers on greenhouse gas emissions and yield in paddy soils. Trans. Chin. Soc. Agric. Eng. 2018, 34, 162–169. [Google Scholar]
- Wang, X.; Yang, X.; Lü, S.; Chen, F. The possible effects of global warming on cropping systems in China XII. The possible effects of climate warming on geographical shift in safe planting area of rice in cold areas and the risk analysis of chilling damage. Sci. Agric. Sin. 2016, 49, 1859–1871. [Google Scholar]
- Nie, T.; Zhang, Z.; Qi, Z.; Chen, P.; Sun, Z.; Liu, X. Characterizing spatiotemporal dynamics of CH4 fluxes from rice paddies of cold region in Heilongjiang Province under climate change. Int. J. Environ. Res. Public Health 2019, 16, 692. [Google Scholar] [CrossRef]
- Guo, L. Optimized Irrigation Regime of Rice under Dry Seeded and Thinly Populated Cultivated Pattern; Northeast Agricultural University: Harbin, China, 2002. [Google Scholar]
- Li, C.; Qiu, J.; Frolking, S.; Xiao, X.; Salas, W.; Moore, B.; Boles, S.; Huang, Y.; Sass, R. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys. Res. Lett. 2002, 29, 1–4. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Xu, J. Influence of controlled irrigation on CH4 and N2O emissions from paddy fields and subsequent greenhouse effect. Adv. Water Sci. 2010, 21, 235–240. [Google Scholar]
- Hou, H.; Peng, S.; Xu, J.; Yang, S.; Mao, Z. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere 2012, 89, 884–892. [Google Scholar] [CrossRef]
- Tariq, A.; Jensen, L.S.; Tourdonnet, S.D.; Sander, B.O.; Neergaard, A.D. Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils. Geoderma 2016, 304, 49–58. [Google Scholar] [CrossRef]
- Khalil, M.I.; Baggs, E.M. CH4 oxidation and N2O emissions at varied soil waterfilled pore spaces and headspace CH4 concentrations. Soil Biol. Biochem. 2005, 37, 1785–1794. [Google Scholar] [CrossRef]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said, P.D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar]
- Li, J.; Wang, M.; Wang, S.; Huang, Y.; Zheng, X.; Xu, X. Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem. Chinese J. Atmos. Sci. 2003, 27, 740–749. [Google Scholar]
- Md, M.; Gil, W. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crop. Res. 2016, 193, 133–142. [Google Scholar]
- Xie, B.; Zheng, X.; Zhou, Z.; Gu, J.; Zhu, B.; Chen, X.; Shi, Y.; Wang, Y.; Zhao, Z.; Liu, C.; Yao, Z.; Zhu, J. Effects of nitrogen fertilizer on CH4 emission from rice fields: Multi-site field observations. Plant Soil 2010, 326, 393–401. [Google Scholar] [CrossRef]
- Schimel, J. Rice, microbes and methane. Nature 2000, 403, 375–377. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, J.; Zheng, X.; Wang, Y.; Xu, X. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Marhan, S.; Auber, J.; Poll, C. Additive effects of earthworms, nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. Appl. Soil Ecol. 2015, 86, 55–61. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, Y.; Sun, X.; Ding, J.; Jiang, Z.; Xu, J. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmos. Environ. 2019, 200, 69–77. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Chen, S.; Zheng, E.; Nie, T.; Liu, M. 15N tracer-based analysis of water and nitrogen management differences in uptake and partitioning of N applied at different growth stages in transplanted rice. Trans. Chin. Soc. Agric. Mach 2018, 49, 309–317. [Google Scholar]
- Dong, W.; Guo, J.; Xu, L.; Song, Z.; Zhang, J.; Tang, A.; Zhang, X.; Leng, C.; Liu, Y.; Wang, L.; et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ. Sci. 2018, 64, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, E.; Rao, M. The effect of agricultural practices on methane and nitrous oxide emissions from rice field and pot experiments. Nutr. Cycl. Agroecosyst. 1997, 49, 47–50. [Google Scholar]
- Zhang, P.; Qin, G.; Wang, Y. Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis. Energies 2019, 12, 981. [Google Scholar] [CrossRef]
Irrigation Modes | Regreening (mm) | Former Tillering | Middle Tillering | Later Tillering | Jointing and Booting | Heading and Flowering | Milky Maturity | Yellow Maturity |
---|---|---|---|---|---|---|---|---|
CI | 0 ~30 | 0.7 θs ~0 mm | 0.7 θs ~0 mm | drainage | 0.8 θs ~0 mm | 0.8 θs ~0 mm | 0.7 θs ~0 mm | drying |
FI | 0 ~30 | 0 mm ~50 mm | 0 mm ~50 mm | drainage | 0 mm ~50 mm | 0 mm ~50 mm | 0 mm ~50 mm | drying |
Treatments | CH4 Emission (kg·hm−2) | N2O Emission (kg·hm−2) | GWP by CH4 (kg CO2-eq·hm−2) | GWP by N2O (kg CO2-eq·hm−2) | Total GWP (kg CO2-eq·hm−2) | GHGI (kg CO2-eq·kg−1) | Water Consumption (kg·hm−2) | WP (kg·m−3) |
---|---|---|---|---|---|---|---|---|
CI+N0 | 157.77e | 0.14e | 3313.19e | 43.90e | 3357.09f | 0.55d | 4224g | 1.45c |
CI+N1 | 189.79d | 0.27d | 3985.53d | 83.07d | 4068.60e | 0.56d | 4819f | 1.51c |
CI+N2 | 174.83d | 0.35bc | 3671.44d | 109.90bc | 3781.34e | 0.37f | 4998e | 2.05a |
CI+N3 | 180.84d | 0.44a | 3797.65d | 135.08a | 3932.73e | 0.39e | 5197d | 1.95b |
FI+N0 | 219.83c | 0.13e | 4616.46c | 41.55e | 4658.01d | 0.80bc | 7095c | 0.82f |
FI+N1 | 235.54b | 0.24d | 4946.30b | 75.60d | 5021.90c | 0.84b | 7610b | 0.79f |
FI+N2 | 329.48a | 0.32c | 6919.04a | 99.41c | 7018.45a | 0.95a | 7799ab | 0.94e |
FI+N3 | 291.56a | 0.39b | 6122.83a | 120.77b | 6243.60b | 0.78c | 7982a | 1.01d |
Treatments | Spikes Per Unit Area | Grain Number Per Spike | Seed-Setting Rate/% | 1000-Grain Weight/g | Yield (kg·hm−2) |
---|---|---|---|---|---|
CI+N0 | 406e | 74c | 84.71c | 26.58c | 6130.12d |
CI+N1 | 510d | 84bc | 88.99b | 27.33bc | 7294.96c |
CI+N2 | 554c | 100a | 91.82a | 28.32a | 10,224.4a |
CI+N3 | 541c | 89b | 92.92a | 27.01bc | 10,113.2a |
FI+N0 | 472de | 70c | 83.20c | 26.09c | 5808.84d |
FI+N1 | 547c | 73c | 86.92bc | 26.66c | 5985.3d |
FI+N2 | 588b | 90b | 90.40ab | 27.65b | 7357.2c |
FI+N3 | 608a | 89b | 88.21b | 27.72b | 8049.78b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, T.; Chen, P.; Zhang, Z.; Qi, Z.; Lin, Y.; Xu, D. Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China. Int. J. Environ. Res. Public Health 2019, 16, 1639. https://doi.org/10.3390/ijerph16091639
Nie T, Chen P, Zhang Z, Qi Z, Lin Y, Xu D. Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China. International Journal of Environmental Research and Public Health. 2019; 16(9):1639. https://doi.org/10.3390/ijerph16091639
Chicago/Turabian StyleNie, Tangzhe, Peng Chen, Zhongxue Zhang, Zhijuan Qi, Yanyu Lin, and Dan Xu. 2019. "Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China" International Journal of Environmental Research and Public Health 16, no. 9: 1639. https://doi.org/10.3390/ijerph16091639
APA StyleNie, T., Chen, P., Zhang, Z., Qi, Z., Lin, Y., & Xu, D. (2019). Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China. International Journal of Environmental Research and Public Health, 16(9), 1639. https://doi.org/10.3390/ijerph16091639