Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water
Abstract
:1. Introduction
2. Methods
2.1. Chemical and Instruments
2.2. Drug Standards, Spiked Samples and Surface Water Collection
2.3. Preparation and Characterization
2.4. Removal of GSF in Surface Water
2.4.1. Removal Efficiency in Surface Water and Deionized Water Samples
2.4.2. Effect of pH
2.4.3. Effect of Ionic Strength
2.4.4. Removal Efficiency of SMIPs, SNIPs and Activated Carbon
2.5. DSPE Procedure for the Extraction of GSF
3. Results and Discussion
3.1. Removal of GSF from Surface Water
3.1.1. Effect of pH
3.1.2. Effect of Ionic Strength
3.1.3. Comparison of Removal Efficiency of SMIPs, SNIPs and Activated Carbon
3.2. Optimization of the DSPE Procedure
3.2.1. Amount of SMIPs
3.2.2. Type and Volume of Washing Solvent
3.2.3. Type and Volume of Elution Solvent
3.2.4. Adsorption and Desorption Time
3.3. Selectivity Characteristics of SMIPs
3.4. Method Validation
3.5. Sample Application
3.6. Reusability of Sorbent
3.7. Comparison with Previous Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DSPE | Dispersive solid phase extraction |
GSF | Griseofulvin |
IF | Imprinting factor |
MIPs | Molecularly imprinted polymers |
PAC | Powder activated carbon |
SMIPs | Surface molecularly imprinted polymers |
SNIPs | Surface non-molecularly imprinted polymers |
SPE | Solid phase extraction |
References
- Reis, E.O.; Foureaux, A.F.S.; Rodrigues, J.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S.; Lange, L.C. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ. Pollut. 2019, 250, 773–781. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, S.; Merino, L.M.; Esteban, S.; López de Alda, M.; Barceló, D.; Durán, J.J.; López-Martínez, J.; Aceña, J.; Pérez, S.; Mastroianni, N.; et al. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern antarctic peninsula region. Environ. Pollut. 2017, 229, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.C.; Sophia, C.A. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019, 124, 448–461. [Google Scholar] [CrossRef]
- Szymańska, U.; Wiergowski, M.; Sołtyszewski, I.; Kuzemko, J.; Wiergowska, G.; Woźniak, M.K. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchem. J. 2019, 147, 729–740. [Google Scholar] [CrossRef]
- Petersen, A.B.; Rønnest, M.H.; Larsen, T.O.; Clausen, M.H. The chemistry of Griseofulvin. Chem. Rev. 2014, 114, 12088–12107. [Google Scholar] [CrossRef] [Green Version]
- Rønnest, M.H.; Raab, M.S.; Anderhub, S.; Boesen, S.; Kramer, A.; Larsen, T.O.; Clausen, M.H. Disparate SAR data of griseofulvin analogues for the dermatophytes Trichophyton mentagrophytes, T. rubrum, and MDA-MB-231 cancer cells. J. Med. Chem. 2012, 55, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Rathinasamy, K.; Jindal, B.; Asthana, J.; Singh, P.; Balaji, P.V.; Panda, D. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer 2010, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Knasmüller, S.; Parzefall, W.; Helma, C.; Kassie, F.; Ecker, S.; Schulte-Hermann, R. Toxic effects of griseofulvin: Disease models, mechanisms, and risk assessment. Crit. Rev. Toxicol. 1997, 27, 495–537. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yan, J.; Sachar, M.; Zhang, X.; Guan, M.; Xie, W.; Ma, X. A metabolomic perspective of griseofulvin-induced liver injury in mice. Biochem. Pharmacol. 2015, 98, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.M. Phytotoxic effects of some antibiotics. Ann. Bot. 1951, 15, 493–499. [Google Scholar] [CrossRef]
- Margulis, L.; Neviackas, J.A.; Banerjee, S. Cilia regeneration in stentor: Inhibition, delay and abnormalities induced by Griseofulvin. J. Protozool. 1969, 16, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T. Fish-toxicity problems of pesticides in Japan—The present situation and the policies of the ministry of agriculture and forestry. PANS Pest Artic. News Summ. 1969, 15, 325–329. [Google Scholar] [CrossRef]
- Iglesias, A.; Nebot, C.; Vázquez, B.I.; Miranda, J.M.; Abuín, C.M.F.; Cepeda, A. Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain. Environ. Sci. Pollut. Res. Int. 2014, 21, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Chitescu, C.L.; Kaklamanos, G.; Nicolau, A.I.; Stolker, A.A.M.L. High sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-exactiveorbitrap HRMS. Application to the Danube river basin on the Romanian territory. Sci. Total Environ. 2015, 532, 501–511. [Google Scholar] [CrossRef]
- Kuroda, K.; Nakada, N.; Hanamoto, S.; Inaba, M.; Katayama, H.; Do, A.T.; Nga, T.T.V.; Oguma, K.; Hayashi, T.; Takizawa, S. Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: Comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam. Sci. Total Environ. 2015, 506, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Yoon, S.; Lee, S.; Narumiya, M.; Nakada, N.; Han, I.; Tanaka, H. Occurrence and fate of PPCPs wastewater treatment plants in Korea. In Proceedings of the 2nd International Conference on Environment and Industrial Innovation, Singapore, 2–3 June 2012; pp. 57–61. [Google Scholar]
- Okuda, T.; Yamashita, N.; Tanaka, H.; Matsukawa, H.; Tanabe, K. Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environ. Int. 2009, 35, 815–820. [Google Scholar] [CrossRef]
- Petit, K.; Mondeguer, F.; Roquebert, M.; Biard, J.; Pouchus, Y. Detection of griseofulvin in a marine strain of Penicilliumwaksmanii by ion trap mass spectrometry. J. Microbiol. Methods 2004, 58, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Kahsay, G.; Adegoke, A.O.; Van Schepdael, A.; Adams, E. Development and validation of a reversed phase liquid chromatographic method for analysis of griseofulvin and impurities. J. Pharma. Biomed. Anal. 2013, 80, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, X.; Wang, L.; Lin, L.; Wang, D. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water. Ecotoxicol. Environ. Saf. 2019, 181, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-L.; Wang, R.-Z.; Liu, Y.-G.; Zeng, G.-M.; Lai, C.; Xu, P.; Lu, B.-A.; Xu, J.-J.; Wang, C.; Huang, C. Application of molecularly imprinted polymers in wastewater treatment: A review. Environ. Sci. Pollut. Res. 2015, 22, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Martín-Esteban, A. Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trend. Environ. Anal. Chem. 2016, 9, 8–14. [Google Scholar] [CrossRef]
- Luo, Z.; Zeng, A.; Zheng, P.; Guo, P.; Du, W.; Du, K.; Fu, Q. Preparation of surface molecularly imprinted polymers as the solid-phase extraction sorbents for the specific recognition of penicilloic acid in penicillin. Anal. Methods 2014, 6, 7865–7874. [Google Scholar] [CrossRef]
- Xu, H.; Pan, W.; Song, D.; Yang, G. Development of an improved liquid phase microextraction technique and its application in the analysis of flumetsulam and its two analogous herbicides in soil. J. Agric. Food Chem. 2007, 55, 9351–9356. [Google Scholar] [CrossRef]
- Zielińska, K.; van Leeuwen, H.P.; Thibault, S.; Town, R.M. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction. Langmuir 2012, 28, 14672–14680. [Google Scholar] [CrossRef]
- Aguilera-Herrador, E.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Anal. Chem. 2008, 80, 793–800. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Garrido, I.; Campillo, N.; Viñas, P.; Hellín, P.; Flores, P.; Fenoll, J. Determination of spirocyclictetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid–liquid microextraction. Food Chem. 2016, 202, 389–395. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. CoFe2O4 nano-particles functionalized with 8-hydroxyquinoline for dispersive solid-phase micro-extraction and direct fluorometric monitoring of aluminum in human serum and water samples. Anal. Chim. Acta 2015, 881, 54–64. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, W.; Li, Z.; He, J.; Tang, X.; Wang, C. Extraction of natural estrogens in environmental waters by dispersive multiwalled carbon nanotube-based agitation-assisted adsorption and ultrasound-assisted desorption. Anal. Methods 2014, 6, 1235–1241. [Google Scholar] [CrossRef]
- Bashir, K.; Guo, P.; Chen, G.; Li, Y.; Ge, Y.; Shu, H.; Fu, Q. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. J. Arab. Chem. 2019. [Google Scholar] [CrossRef]
- Mallick, A.; Saha, S.; Pachfule, P.; Roy, S.; Banerjee, R. Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites. J. Mater. Chem. 2010, 20, 9073. [Google Scholar] [CrossRef]
- Karlsson, J.G.; Andersson, L.I.; Nicholls, I.A. Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine. Anal. Chim. Acta 2001, 435, 57–64. [Google Scholar] [CrossRef]
- Beltran, A.; Marcé, R.; Cormack, P.; Borrull, F. Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine. J. Chromatogr. A 2009, 1216, 2248–2253. [Google Scholar] [CrossRef]
- Fukuhara, T.; Iwasaki, S.; Kawashima, M.; Shinohara, O.; Abe, I. Adsorbability of estrone and 17β-estradiol in water onto activated carbon. Water Res. 2006, 40, 241–248. [Google Scholar] [CrossRef]
- Guo, P.; Luo, Z.; Xu, X.; Zhou, Y.; Zhang, B.; Chang, R.; Du, W.; Chang, C.; Fu, Q. Development of molecular imprinted column-on line-two dimensional liquid chromatography for selective determination of clenbuterol residues in biological samples. Food Chem. 2017, 217, 628–636. [Google Scholar] [CrossRef]
- Schwarz, H.; Waldman, B.; Madrid, V. GLC determination of griseofulvin in human plasma. J. Pharma. Sci. 1976, 65, 370–372. [Google Scholar] [CrossRef]
- Mistri, H.N.; Jangid, A.G.; Sanyal, M.; Shrivastav, P. Electrospray ionization LC–MS/MS validated method to quantify griseofulvin in human plasma and its application to bioequivalence study. J. Chromatogr. B 2007, 850, 318–326. [Google Scholar] [CrossRef]
- Wei, B.; Liang, D.; Bates, T.R. Development and validation of a HPLC method to determine griseofulvin in rat plasma: Application to pharmacokinetic studies. Anal. Chem. Insights 2008, 3, 103–109. [Google Scholar] [CrossRef] [Green Version]
Sample | Spiked Drug Conc. (µg/mL) | Recoveries (%) n = 3 | Precision (RSD %, n = 3) | |
---|---|---|---|---|
Intra-Day | Inter-Day | |||
Deionized Water | 0.0 | ND | 0.0 | 0.0 |
0.1 | 96.9 | 0.3 | 0.7 | |
10 | 98.8 | 0.2 | 0.8 | |
50 | 93.9 | 0.06 | 0.4 | |
Surface Water | 0.0 | ND | 0.0 | 0.0 |
0.1 | 95.5 | 0.8 | 2.1 | |
10 | 98.6 | 1.5 | 3.5 | |
50 | 91.6 | 1.8 | 4.3 |
Method | Sample | Sample Volume Used | Precision | Limit of Detection (ng/mL) | Recoveries (%) | References |
---|---|---|---|---|---|---|
Gas Liquid Chromatography, Liquid-Liquid extraction GLC, LLE | Human Plasma | 1 | NA | 6 | 97–107 | 39 |
LC-MS/MS, SPE | Human Plasma | 0.5 | 7.5% | 20 (LLOQ) | 87.36 | 40 |
HPLC-Fluorescence, LLE | Rat Plasma | 0.1 | 3.0–7.5% | 1 | 99.20 | 41 |
HPLC-UV, SMISPE | Rat Plasma | 0.5 | 0.9–4.5% | 20 | 97.7 | 33 |
HPLC-UV, SMIP-DSPE | Surface Water Sample | 5 | 0.2–4.3% | 10 | 98.8 | Current work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, K.; Luo, Z.; Chen, G.; Shu, H.; Cui, X.; Li, W.; Lu, W.; Fu, Q. Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water. Int. J. Environ. Res. Public Health 2020, 17, 134. https://doi.org/10.3390/ijerph17010134
Bashir K, Luo Z, Chen G, Shu H, Cui X, Li W, Lu W, Fu Q. Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water. International Journal of Environmental Research and Public Health. 2020; 17(1):134. https://doi.org/10.3390/ijerph17010134
Chicago/Turabian StyleBashir, Kamran, Zhimin Luo, Guoning Chen, Hua Shu, Xia Cui, Wen Li, Wang Lu, and Qiang Fu. 2020. "Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water" International Journal of Environmental Research and Public Health 17, no. 1: 134. https://doi.org/10.3390/ijerph17010134
APA StyleBashir, K., Luo, Z., Chen, G., Shu, H., Cui, X., Li, W., Lu, W., & Fu, Q. (2020). Development of Surface Molecularly Imprinted Polymers as Dispersive Solid Phase Extraction Coupled with HPLC Method for the Removal and Detection of Griseofulvin in Surface Water. International Journal of Environmental Research and Public Health, 17(1), 134. https://doi.org/10.3390/ijerph17010134