Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Mental Health Status
2.2.2. Evaluation of Individual Health Risk Factors
2.2.3. Collection of Blood Samples
2.3. The Experimental Method
2.3.1. Genotyping
2.3.2. Methylation Test of MAOA Gene
2.4. Quality Control
2.4.1. Quality Control of Field Questionnaire Survey
2.4.2. Laboratory Quality Control
2.5. Statistical Analysis
3. Results
3.1. Psychological Abnormalities with Different Demographic Characteristics
3.2. Risk Scores of Major Risk Factors for Mental Health of Different Sexes
3.3. Comparison of Mental Health Scores between Different Genotypes of MAOA
3.4. Comparison of DNA Methylation of the MAOA Gene between the Normal Group and Abnormal Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, J.P.; Moritz, S. On the relevance of mental imagery beyond stress-related psychiatric disorders. Front. Psychiatry 2014, 7, 75–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldana, S.G.; Merrill, R.M.; Price, K.; Hardy, A.; Hager, R. Financial impact of acomprehensive multisite workplace health promotion program. Prev. Med. 2005, 40, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, A.; Stickley, A.; Haro, J.M. Subclinical psychosis and suicidal behavior in england: Findings from the 2007 adult psychiatric morbidity survey. Schizophr. Res. 2015, 168, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, A.; Justice, N.; Moses, A. Household costs of mental health care in Ghana. J. Ment. Health Policy Econ. 2013, 16, 151. [Google Scholar]
- Yang, S.; Wang, J.; Xie, B. The first mental health law of China. Asian J. Psychiatry 2015, 13, 72–74. [Google Scholar]
- Esan, O.; Abdumalik, J.; Eaton, J.; Kola, L.; Fadahunsi, W.; Gureje, O. Global mental health reforms: Mental health Care in Anglophone West Africa. Psychiatr. Serv. 2014, 65, 1084–1087. [Google Scholar] [CrossRef]
- Schwab, K. The Global Economic Burden of Noncommunicable Diseases, A Report by the World Economic Forum and the Harvard School of Public Health. 2011. Available online: http://www.indiaenvironmentportal.org.in/content/337346/the-global-economic-burden-of-non-communicable-diseases/ (accessed on 15 November 2019).
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Fratiglioni, L. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Tang, J.; Li, R.; Zhao, J.; Song, Z.; Ge, H.; Liu, J. Effect of 5-HT2A receptor polymorphisms, work stressors, and social support on job strain among petroleum workers in Xinjiang, China. Int. J. Environ. Res. Public Health 2016, 13, 1258. [Google Scholar] [CrossRef] [Green Version]
- Wiernik, E.; Pannier, B.; Czernichow, S.; Nabi, H.; Hanon, O.; Simon, T.; Danchin, N. Occupational statos m oderates the association between current perceived stress and high bloodpressure. Hypertension 2013, 61, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Tao, N.; Cui, C.Y.; Zhang, J.J.; Liu, J.W. The relationship between occupational burnout and neuroendocrine index of soldiers in alpine environment. Mod. Prev. Med. 2015, 42, 400–401. [Google Scholar]
- Lingyun, S.; Suzhen, G.; Jiwen, L. Investigation on the working ability of nurses in xinjiang third class a hospital. J. Xinjiang Med Univ. 2015, 4, 504–506. [Google Scholar]
- Harvey, S.B.; Modini, M.; Joyce, S.; Milligan-Saville, J.S.; Tan, L.; Mykletun, A.; Mitchell, P.B. Can work make you mentally ill? A systematic meta-review of work-related risk factors for common mental health problems. Occup. Environ. Med. 2017, 74, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Shanfa, Y.; Mingxuan, C. Criteria for the identification of mental illness caused by occupational stress in Japan and Taiwan, China. Environ. Occup. Med. 2016, 33, 1055–1058. [Google Scholar]
- Xiaoxia, Y. Study on General Mental Health Status and Related Factors of Occupational Population in Jinan City; Shandong University: Jinan, China, 2017. [Google Scholar]
- Xingyuan, Q.; Lei, Z.; Dejian, L. Investigation on mental health status of employees in public places in shenzhen and analysis of influencing factors. Chin. J. Health Psychol. 2012, 20, 217–218. [Google Scholar]
- Park, H.; Hwangbo, Y.; Nam, Y. The effect of employment and occupational factors on late-life depression in Korea. J. Occup. Environ. Med. 2018, 60, e492–e497. [Google Scholar] [CrossRef]
- Czabańa, C.; Charzyńska, K.; Mroziak, B. Psychosocial interventions in workplace mental health promotion: An overview. Health Promot. Int. 2011, 26, i70–i84. [Google Scholar] [CrossRef]
- Martin, A.; Sanderson, K.; Cocker, F. Meta-analysis of the effects of health promotion intervention in the workplace on depression and anxiety symptoms. Scand. J. Work Environ. Health 2009, 35, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Eileen, M.; Judith, R. Role of risk assessment in reducing homicides by people with mental illness. Br. J. Psychiatry 2000, 176, 116–120. [Google Scholar]
- Tingting, Y. Preventive Medicine; People’s Medical Publishing House: Beijing, China, 2000; p. 253. [Google Scholar]
- Hudson, L.R.; Pope, J.E. The role of health-risk appraisals in disease management. Manag. Care Interface 2006, 19, 43–45. [Google Scholar]
- Davis, W.A.; Colagiuri, S.; Davis, T.M. Comparison of the framingham and United Kingdom prospective diabetes study cardiovascular risk equations in australian patients with type 2 diabetes from the fremantle diabetes study. Med. J. Aust. 2009, 190, 180–184. [Google Scholar] [CrossRef]
- Yu, Y.W.; Tsai, S.J.; Liou, Y.J.; Hong, C.J.; Chen, T.J. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur. Neuropsychopharmacol. 2006, 16, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.G.; Sander, T.; Kuhn, S.; Smolka, M.; Rommelspacher, H.; Samochowiec, J.; Lesch, K.P. Different allele distribution of a regulatory MAOA gene promoter polymorphism in antisocial and anxious-depressive alcoholics. J. Neural. Transm. 2000, 107, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Hongqin, X. Study on Methylation of PLA2G4C Gene Promoter in Schizophrenia; Jilin University: Changchuan, China, 2011. [Google Scholar]
- Xubei, S. Chromatin and Epigenetic Regulation; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Zhu, W.G.; Srinivasan, K.; Dai, Z.; Duan, W.; Druhan, L.J.; Ding, H.; Otterson, G.A. Methylation of Adjacent CpG Sites Affects Sp1/Sp3 Binding and Activity in the p21Cip1Promoter. Mol. Cell. Biol. 2003, 23, 4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kangaspeska, S.; Stride, B.; Métivier, R.; Polycarpou-Schwarz, M.; Ibberson, D.; Carmouche, R.P.; Reid, G. Transient cyclical methylation of promoter DNA. Nature 2008, 452, 112. [Google Scholar] [CrossRef]
- Métivier, R.; Gallais, R.; Tiffoche, C.; Le Péron, C.; Jurkowska, R.Z.; Carmouche, R.P.; Benes, V. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008, 452, 45–50. [Google Scholar] [CrossRef]
- Konar, A.; Rastogi, M.; Bhambri, A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior. Neurochem. Int. 2019, 129, 104510. [Google Scholar] [CrossRef]
- Im, S.; Jeong, J.; Jin, G.; Yeom, J.; Jekal, J.; Cho, J.A.; Heo, J. Publisher correction: MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci. Rep. 2019, 9, 9505. [Google Scholar]
- Derogatis, L.R.; Unger, R. Symptom Checklist-90-Revised; John Wiley&Sons, Inc.: Oxford, UK, 2010. [Google Scholar]
- Zhengyu, W. Symptom Self-Rating Scale (scl-90); Shanghai Psychiatry: Shanghai, China, 1984; Volume 2, pp. 68–70. [Google Scholar]
- Jisheng, W.; Yan, L.; Ershi, H. Reliability and validity test and norm establishment of scl-90 in middle school students. Chin. J. Ment. Health 1999, 13, 8. [Google Scholar]
- Shulin, C.; Lingjiang, L. SCL-90 reliability validity test and norm recomparison. Chin. J. Neuropsychiatry 2003, 5, 323–327. [Google Scholar]
- Wen, L.; Tao, T.; Heng, S. Evaluation of scl-90 score of medical graduate students and its influencing factors. J. Guangzhou Med. Univ. 2017, 45, 70–73. [Google Scholar]
- Jianping, B.; Youlong, G. The calculation method of risk score in dekang risk factor evaluation. Chin. Soc. Med. 1990, 33–37. [Google Scholar]
- Hongyan, M.; Lvyuan, S. Study on population attributable risk associated with lung cancer risk factors. Orthop. Mag. 2004, 28, 9–10. [Google Scholar]
- Kangyong, X. Study on Quantitative Evaluation of Coronary Heart Disease Risk Factors and Individual Risk Assessment Model; Anhui Medical University: Hefei, China, 2006. [Google Scholar]
- Rothman, K.; Keller, A. The effect of joint exposure to alcohol and tobacco on risk of cancer of the mouth and pharynx. J. Chronic Dis. 1972, 25, 711–716. [Google Scholar] [CrossRef]
- Gao, X.; Ge, H.; Jiang, Y.; Lian, Y.; Zhang, C.; Liu, J. Relationship between job stress and 5-HT2A receptor polymorphisms on self-reported sleep quality in physicians in Urumqi (Xinjiang, China): A cross-sectional study. Int. J. Environ. Res. Public Health 2018, 15, 1034. [Google Scholar] [CrossRef] [Green Version]
- Nakao, M. Work-related stress and psychosomatic medicine. BioPsychoSoc. Med. 2010, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Song, K.W.; Choi, W.S.; Jee, H.J.; Yuh, C.S.; Kim, Y.K.; Kim, L.; Cho, C.H. Correlation of occupational stress with depression, anxiety, and sleep in Korean dentists: Cross-sectional study. BMC Psychiatry 2017, 17, 398. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, T.; Liu, J. Study on the relationship between occupational stress and psychological disorder in oilfield workers in Xinjiang. J. Xinjiang Med. Univ. 2018, 41, 1338–1341. [Google Scholar]
- Li, N.; Yulong, L.; Jia, H.; Dajun, Z.; Li, L.; Jiwen, L. Investigation and analysis on mental health status and related factors of oil workers. Chin. Occup. Med. 2013, 40, 100–103. [Google Scholar]
- Tajvar, A.; Saraji, G.N.; Ghanbarnejad, A.; Omidi, L.; Hosseini, S.S.S.; Abadi, A.S.S. Occupational stress and mental health among nurses in a medical intensive care unit of a general hospital in Bandar Abbas in 2013. Electron. Physician 2015, 7, 1108–1113. [Google Scholar]
- Wang, L.J.; Chen, C.K.; Hsu, S.C.; Lee, S.Y.; Wang, C.S.; Yeh, W.Y. Active job healthy job? Occupational stress and depression among hospital physicians in Taiwan. Ind. Health 2011, 49, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Fossum, I.N.; Bjorvatn, B.; Waage, S.; Pallesen, S. Effects of shift and night work in the offshore petroleum industry: A systematic review. Ind. Health 2013, 51, 530–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorvatn, B.; Stangenes, K.; Oyane, N.; Forberg, K.; Lowden, A.; Holsten, F.; Akerstedt, T. Subjective and objective measures of adaptation and readaptation to night work on an oil rig in the North Sea. Sleep 2006, 29, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torquati, L.; Mielke, G.I.; Brown, W.J.; Burton, N.W.; Kolbe-Alexander, T.L. Shift work and poor mental health: A meta-analysis of longitudinal studies. Am. J. Public Health 2019, 109, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Wang, L.; Ma, H. The mediating effect of psychological capital on occupational stress and depression in oil workers in Panjin area. Chin. Health Stat. 2017, 34, 776–778. [Google Scholar]
- DECODE Study Group. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 2003, 26, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Benrahma, H.; Arfa, I.; Charif, M.; Bounaceur, S.; Eloualid, A.; Boulouiz, R.; Oudghiri, M. Maternal effect and familial aggregation in a type 2 diabetic Moroccan population. J. Community Health 2011, 36, 943–948. [Google Scholar] [CrossRef]
- Nascimento, J.O.V.; Santos, J.D.; Meira, K.C.; Pierin, A.M.G.; Souza-Talarico, J.N. Shift work of nursing professionals and blood pressure, burnout and common mental disorders. Rev. Esc. Enferm. USP 2019, 30, 53. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.Y.; Lee, S.H.; Jeon, Y.; Yoo, R.; Jung, H.Y. Job-seeking stress, mental health problems, and the role of perceived social support in university graduates in Korea. J. Korean Med. Sci. 2018, 33, 149. [Google Scholar] [CrossRef]
- Wang, M.J.; Mykletun, A.; Møyner, E.I.; Øverland, S.; Henderson, M.; Stansfeld, S.; Harvey, S.B. Job strain health and sickness absence: Results from the hordaland health study. PLoS ONE 2014, 9, e96025. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Q.; Wong, T.W.; Yu, T.S. Mental health issues in Chinese offshore oil workers. Occup. Med 2009, 59, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Q.; Wong, T.W.; Yu, T.S. Influence of occupational stress on mental health among Chinese off-shore oil workers. Scand. J. Public Health 2009, 37, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Wong, T.W.; Yu, I.T.S. Association of occupational stress and social support with health -related behaviors among Chinese offshore oil workers. J. Occup. Health 2008, 50, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslund, C.; Nordquist, N.; Comasco, E.; Leppert, J.; Oreland, L.; Nilsson, K.W. Maltreatment, MAOA, and delinquency sex differences in gene-environment interaction in a large population-based cohort of adolescents. Behav. Genet. 2011, 41, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Cong, C.; Meiping, W.; Yanmiao, C. Interaction between MAOA gene T941G polymorphism and peer aggression on early depression in male adolescents: Regulatory effects of COMT gene Val158Met polymorphism. J. Psychol. 2017, 49, 206–218. [Google Scholar]
- Geoffroy, P.A.; Curis, E.; Courtin, C.; Moreira, J.; Morvillers, T.; Etain, B.; Marie-Claire, C. Lithium response in bipolar disorders and core clock genes expression. World J. Biol. Psychiatry 2018, 19, 619–632. [Google Scholar] [CrossRef]
- Uher, R.T.; Katherine, E.; Henigsberg, N. Common genetic variation and antidepressant efficacy in major depressive disorder: A meta-analysis of three genome-wide pharmacogenetic studies. Am. J. Psychiatry 2013, 170, 207–217. [Google Scholar]
- Tadic, A.; Rujescu, D.; Szegedi, A.; Giegling, I.; Singer, P.; Möller, H.J.; Dahmen, N. Association of a MAOA gene variant with generalized anxiety disorder, but not with panic disorder or major depression. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 2010, 117, 1–6. [Google Scholar]
- Lou, S.; Lee, H.M.; Qin, H.; Li, J.W.; Gao, Z.; Liu, X.; Lok, S. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014, 15, 408. [Google Scholar] [CrossRef]
- Heyn, H.; Esteller, M. DNA methylation profiling in the clinic: Applications and challenges. Nat. Rev. Genet. 2012, 13, 679–692. [Google Scholar] [CrossRef]
- Kebir, O.; Chaumette, B.; Krebs, M.O. Epigenetic variability in conversion to psychosis: Novel findings from an innovative longitudinal methylomic analysis. Transl. Psychiatry 2018, 8, 93. [Google Scholar] [CrossRef]
- Domschke, K.; Tidow, N.; Kuithan, H.; Schwarte, K.; Klauke, B.; Ambrée, O.; Zwanzger, P. Monoamine oxidase A gene DNA hypomethylation-a risk factor for panic disorder? Int. J. Neuropsychopharmacol. 2012, 15, 1217–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, C.; Richter, J.; Mahr, M.; Gajewska, A.; Schiele, M.A.; Gehrmann, A.; Pauli, P. MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl. Psychiatry 2016, 6, e773. [Google Scholar] [CrossRef] [PubMed]
- Teroganova, N.; Girshkin, L.; Suter, C.M.; Green, M.J. DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: A systematic review. BMC Genet. 2016, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer | Direction | Sequence |
---|---|---|
MAOA rs1137070 | Forward | 5′-CCATTTCTCTGCCCCTCACTCA-3′ |
Reverse | 5′-GCATGGAGACCCCTGGGATAGT-3′ | |
MAOA rs6323 | Forward | 5′-CGACCTTGACTGCCAAGATTCA-3′ |
Reverse | 5′-TGGCCAAGGATATGAGGAAATTGA-3′ |
Primer | Sequence |
---|---|
MAOA_06F | GGGATTTGGGTAGTTGTGTTTT |
MAOA_06R | AAAACATAAACACAAACRCCTCAAC |
MAOA_16F | TTTTTGATATTYGGGGGGAGT |
MAOA_16R | CTACACCCAATAATCCTTTCCAACTAC |
Variables | Number | Number of Psychological Abnormalities | Incidence (%) | χ2 | p |
---|---|---|---|---|---|
Sex | |||||
Male | 2208 | 446 | 20.2 | 1.689 | 0.195 |
Female | 1423 | 313 | 22.0 | ||
Ethnicity | |||||
Han | 2622 | 579 | 22.1 | 7.933 | 0.005 |
Minority | 1009 | 180 | 23.7 | ||
Age group, years | |||||
≤30 | 522 | 95 | 18.2 | 34.085 | <0.001 |
30–45 | 1785 | 444 | 24.9 | ||
>45 | 1324 | 220 | 16.6 | ||
Type of work | |||||
Drilling | 573 | 96 | 16.8 | 11.267 | 0.01 |
Extract oil | 407 | 97 | 23.8 | ||
Oil transportation | 1166 | 266 | 22.8 | ||
Stoker hot note work | 1485 | 300 | 20.2 | ||
Working years | |||||
≤10 | 1044 | 234 | 22.4 | 10.56 | 0.005 |
10–20 | 435 | 111 | 25.5 | ||
>20 | 2152 | 414 | 19.2 | ||
Educational level | |||||
Associate’s degree or below | 2703 | 551 | 20.4 | 1.72 | 0.19 |
Bachelor’s degree or higher | 928 | 208 | 22.4 | ||
Professional titles | |||||
Primary | 1349 | 247 | 18.3 | 8.963 | 0.011 |
Intermediate | 758 | 173 | 22.8 | ||
Senior | 1524 | 339 | 22.2 | ||
Shift | |||||
Fixed day shift | 1183 | 216 | 18.3 | 7.423 | 0.007 |
Shift | 2448 | 543 | 22.2 | ||
Monthly income | |||||
≤3500 | 1397 | 285 | 20.4 | 0.347 | 0.586 |
>3500 | 2234 | 474 | 21.2 | ||
Marital status | |||||
Single | 359 | 58 | 16.2 | 6.472 | 0.039 |
Married | 2943 | 624 | 21.2 | ||
Divorced or widowed | 329 | 77 | 23.4 | ||
Smoking | |||||
Yes | 1513 | 309 | 20.4 | 0.362 | 0.562 |
No | 2118 | 450 | 21.2 |
≤30 | 30–45 | 45 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | BP | RM | OR | BP | RM | OR | BP | RM | |||
Male | Ethnicity | Minority | 1.000 | 1.036 | 1.036 | 1.000 | 1.093 | 1.093 | 1.000 | 1.145 | 1.145 |
Han | 0.885 | 0.917 | 0.706 | 0.772 | 0.436 | 0.499 | |||||
Type of work | Drilling | 1.000 | 2.996 | 2.996 | 1.000 | 3.397 | 3.397 | 1.000 | 3.015 | 3.015 | |
Extract oil | 0.436 | 1.306 | 0.528 | 1.794 | 0.679 | 2.047 | |||||
Oil transportation | 0.336 | 1.007 | 0.356 | 1.209 | 0.589 | 1.776 | |||||
Stoker hot note work | 0.317 | 0.950 | 0.556 | 1.889 | 0.582 | 1.755 | |||||
Shift | Fixed day shift | 1.000 | 0.560 | 0.560 | 1.000 | 0.623 | 0.623 | 1.000 | 0.512 | 0.512 | |
Shift | 2.167 | 1.214 | 1.881 | 1.172 | 2.673 | 1.369 | |||||
Stress level | Low stress | 1.000 | 2.840 | 1.000 | 2.844 | 1.000 | 2.123 | ||||
Moderate stress | 1.659 | 2.840 | 4.712 | 1.377 | 2.844 | 3.916 | 1.283 | 2.123 | 2.724 | ||
High stress | 1.789 | 5.081 | 1.676 | 4.767 | 1.544 | 3.278 | |||||
ERI index | Low effort-High return | 1.000 | 0.670 | 0.670 | 1.000 | 0.614 | 0.614 | 1.000 | 0.552 | 0.552 | |
High effort-low return | 2.020 | 1.353 | 2.075 | 1.274 | 2.289 | 1.264 | |||||
Female | Stress level | Low stress | 1.000 | 1.783 | 1.783 | 1.000 | 1.730 | 1.730 | 1.000 | 2.081 | 2.081 |
Moderate stress | 1.667 | 2.972 | 1.534 | 2.654 | 1.335 | 2.778 | |||||
High stress | 1.824 | 3.252 | 1.619 | 2.801 | 1.342 | 2.793 | |||||
ERI index | Low effort-High return | 1.000 | 0.779 | 0.779 | 1.000 | 0.599 | 0.599 | 1.000 | 0.440 | 0.440 | |
High effort-low return | 1.974 | 1.538 | 2.498 | 1.496 | 3.849 | 1.694 |
RS6323 | RS1137070 | |||||
---|---|---|---|---|---|---|
TT | GT | GG | CC | CT | TT | |
SCL-90 total score | 162.60 ± 59.05 | 161.78 ± 59.57 | 152.94 ± 53.82 | 162.33 ± 57.47 | 157.00 ± 58.24 | 159.68 ± 58.16 |
Somatization | 22.97 ± 8.93 * | 22.37 ± 8.48 | 20.82 ± 7.85 | 22.39 ± 8.48 | 22.12 ± 8.31 | 21.91 ± 8.80 |
Forced symptoms | 17.57 ± 7.18 | 17.60 ± 7.34 | 16.10 ± 6.42 | 17.34 ± 6.95 | 16.99 ± 7.16 | 17.19 ± 7.08 |
Interpersonal sensitivity | 16.64 ± 6.15 | 16.56 ± 6.41 | 15.61 ± 560 | 16.57 ± 6.27 | 16.11 ± 6.27 | 16.33 ± 6.09 |
Depression | 25.19 ± 9.03 | 25.07 ± 8.89 | 23.91 ± 7.72 | 25.31 ± 8.60 | 24.29 ± 8.47 | 24.76 ± 8.85 |
Anxiety | 18.33 ± 6.96 | 17.76 ± 6.59 | 17.15 ± 6.21 | 18.052 ± 6.64 | 17.34 ± 6.57 | 18.05 ± 6.78 |
Hostile | 10.17 ± 4.31 | 9.95 ± 4.06 | 9.55 ± 3.87 | 10.04 ± 4.08 | 9.73 ± 4.07 | 10.02 ± 4.23 |
Terrorist | 12.30 ± 5.077 | 12.18 ± 4.93 | 11.73 ± 4.90 | 12.42 ± 5.03 | 11.86 ± 4.88 | 12.05 ± 5.03 |
Paranoid | 11.17 ± 4.11 | 11.08 ± 4.03 | 10.55 ± 3.82 | 11.04 ± 3.97 | 10.84 ± 3.91 | 11.02 ± 4.11 |
Psychotic | 17.77 ± 6.64 | 17.80 ± 6.85 | 16.96 ± 6.29 | 17.83 ± 6.63 | 17.09 ± 6.55 | 17.62 ± 6.61 |
MAOA Gene | Psychological Normal | Psychological Abnormal | T | p |
---|---|---|---|---|
CpG1 | 0.33 ± 0.17 | 0.11 ± 0.18 | 4.309 | < 0.001 |
CpG2 | 0.33 ± 0.17 | 0.11 ± 0.18 | 4.309 | < 0.001 |
CpG3 | 0.20 ± 0.10 | 0.07 ± 0.12 | 4.042 | < 0.001 |
CpG4 | 0.31 ± 0.16 | 0.11 ± 0.15 | 4.417 | < 0.001 |
CpG5 | 0.31 ± 0.16 | 0.09 ± 0.16 | 4.712 | < 0.001 |
CpG6 | 0.23 ± 0.14 | 0.08 ± 0.14 | 3.672 | < 0.001 |
CpG7 | 0.32 ± 0.17 | 0.10 ± 0.17 | 4.435 | < 0.001 |
CpG8 | 0.30 ± 0.16 | 0.10±0.17 | 4.155 | < 0.001 |
CpG9 | 0.14 ± 0.08 | 0.06 ± 0.10 | 3.035 | < 0.001 |
CpG10 | 0.31 ± 0.16 | 0.10 ± 0.16 | 4.498 | < 0.001 |
CpG11 | 0.31 ± 0.16 | 0.09 ± 0.16 | 4.712 | < 0.001 |
CpG12 | 0.19 ± 0.11 | 0.06±0.10 | 4.234 | < 0.001 |
CpG13 | 0.32 ± 0.17 | 0.11±0.18 | 4.113 | < 0.001 |
CpG14 | 0.33 ± 0.17 | 0.11 ± 0.18 | 4.309 | < 0.001 |
CpG15 | 0.24 ± 0.13 | 0.08 ± 0.14 | 4.062 | < 0.001 |
CpG16 | 0.33 ± 0.17 | 0.10 ± 0.18 | 4.505 | < 0.001 |
CpG17 | 0.33 ± 0.17 | 0.10 ± 0.18 | 4.505 | < 0.001 |
CpG18 | 0.26 ± 0.14 | 0.08 ± 0.13 | 4.563 | < 0.001 |
CpG19 | 0.34 ± 0.18 | 0.11 ± 0.19 | 4.262 | < 0.001 |
CpG20 | 0.44 ± 0.22 | 0.14 ± 0.23 | 4.571 | < 0.001 |
CpG21 | 0.21 ± 0.11 | 0.08 ± 0.12 | 3.874 | < 0.001 |
CpG22 | 0.28 ± 0.14 | 0.10 ± 0.14 | 4.406 | < 0.001 |
CpG23 | 0.44 ± 0.22 | 0.14 ± 0.23 | 4.571 | < 0.001 |
CpG24 | 0.24 ± 0.13 | 0.09 ± 0.13 | 3.954 | < 0.001 |
CpG25 | 0.38 ± 0.19 | 0.13 ± 0.20 | 4.395 | < 0.001 |
CpG26 | 0.43 ± 0.20 | 0.16 ± 0.20 | 4.627 | < 0.001 |
CpG27 | 0.30 ± 0.15 | 0.10 ± 0.15 | 4.569 | < 0.001 |
CpG28 | 0.28 ± 0.14 | 0.10 ± 0.15 | 4.255 | < 0.001 |
CpG29 | 0.46 ± 0.23 | 0.14 ± 0.24 | 4.668 | < 0.001 |
CpG30 | 0.37 ± 0.19 | 0.11 ± 0.19 | 4.690 | < 0.001 |
CpG31 | 0.43 ± 0.22 | 0.14 ± 0.22 | 4.518 | < 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Li, X.; Ning, L.; Liu, J. Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China. Int. J. Environ. Res. Public Health 2020, 17, 149. https://doi.org/10.3390/ijerph17010149
Jiang T, Li X, Ning L, Liu J. Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China. International Journal of Environmental Research and Public Health. 2020; 17(1):149. https://doi.org/10.3390/ijerph17010149
Chicago/Turabian StyleJiang, Ting, Xue Li, Li Ning, and Jiwen Liu. 2020. "Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China" International Journal of Environmental Research and Public Health 17, no. 1: 149. https://doi.org/10.3390/ijerph17010149
APA StyleJiang, T., Li, X., Ning, L., & Liu, J. (2020). Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China. International Journal of Environmental Research and Public Health, 17(1), 149. https://doi.org/10.3390/ijerph17010149