Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation and DNA Extraction
2.3. Drug Metabolic Enzyme SNP Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M.C. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. Who global surveillance and monitoring project. JAMA 1999, 282, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.R.; Villarino, M.E.; Borisov, A.S.; Shang, N.; Gordin, F.; Bliven-Sizemore, E.; Hackman, J.; Hamilton, C.D.; Menzies, D.; Kerrigan, A.; et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N. Engl. J. Med. 2011, 365, 2155–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention (CDC). Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent mycobacterium tuberculosis infection. MMWR. Morb. Mortal. Wkly. Rep. 2011, 60, 1650–1653. [Google Scholar]
- Doan, T.N.; Fox, G.J.; Meehan, M.T.; Scott, N.; Ragonnet, R.; Viney, K.; Trauer, J.M.; McBryde, E.S. Cost-effectiveness of 3 months of weekly rifapentine and isoniazid compared with other standard treatment regimens for latent tuberculosis infection: A decision analysis study. J. Antimicrob. Chemother. 2019, 74, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Bliven-Sizemore, E.E.; Sterling, T.R.; Shang, N.; Benator, D.; Schwartzman, K.; Reves, R.; Drobeniuc, J.; Bock, N.; Villarino, M.E. Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. Int. J. Tuberc. Lung Dis. 2015, 19, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterling, T.R.; Moro, R.N.; Borisov, A.S.; Phillips, E.; Shepherd, G.; Adkinson, N.F.; Weis, S.; Ho, C.; Villarino, M.E. Flu-like and other systemic drug reactions among persons receiving weekly rifapentine plus isoniazid or daily isoniazid for treatment of latent tuberculosis infection in the prevent tuberculosis study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Yang, S.F.; Yeh, Y.P.; Tsao, T.C.; Tsao, S.M. Impacts of 12-dose regimen for latent tuberculosis infection: Treatment completion rate and cost-effectiveness in Taiwan. Medicine 2016, 95, e4126. [Google Scholar] [CrossRef]
- Baciewicz, A.M.; Chrisman, C.R.; Finch, C.K.; Self, T.H. Update on rifampin, rifabutin, and rifapentine drug interactions. Curr. Med Res. Opin. 2013, 29, 1–12. [Google Scholar] [CrossRef]
- Desta, Z.; Soukhova, N.V.; Flockhart, D.A. Inhibition of cytochrome p450 (cyp450) isoforms by isoniazid: Potent inhibition of cyp2c19 and cyp3a. Antimicrob. Agents Chemother. 2001, 45, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Wang, J.S.; Neuvonen, P.J.; Backman, J.T. Isoniazid is a mechanism-based inhibitor of cytochrome p450 1a2, 2a6, 2c19 and 3a4 isoforms in human liver microsomes. Eur. J. Clin. Pharmacol. 2002, 57, 799–804. [Google Scholar] [CrossRef]
- Tung, M.C.; Wen, Y.C.; Wang, S.S.; Lin, Y.W.; Chow, J.M.; Yang, S.F.; Chien, M.H. Impact of long non-coding RNA hotair genetic variants on the susceptibility and clinicopathologic characteristics of patients with urothelial cell carcinoma. J. Clin. Med. 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, B.; Dooley, K.E.; Zhang, Y.; Back, D.J.; Owen, A. Induction of influx and efflux transporters and cytochrome p450 3a4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob. Agents Chemother. 2013, 57, 6366–6369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perwitasari, D.A.; Atthobari, J.; Wilffert, B. Pharmacogenetics of isoniazid-induced hepatotoxicity. Drug Metab. Rev. 2015, 47, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Pradhan, K.; Zhong, X.B.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B 2016, 6, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, D.C.; Santos, N.P.; Moraes, M.R.; Braga, A.C.; Silva, C.A.; Ribeiro-dos-Santos, A.; Santos, S. Association of the cyp2b6 gene with anti-tuberculosis drug-induced hepatotoxicity in a brazilian amazon population. Int. J. Infect. Dis. 2015, 33, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cynamon, M.H.; Zhang, Y.; Harpster, T.; Cheng, S.; DeStefano, M.S. High-dose isoniazid therapy for isoniazid-resistant murine mycobacterium tuberculosis infection. Antimicrob. Agents Chemother. 1999, 43, 2922–2924. [Google Scholar] [CrossRef] [Green Version]
- Weiner, M.; Burman, W.; Vernon, A.; Benator, D.; Peloquin, C.A.; Khan, A.; Weis, S.; King, B.; Shah, N.; Hodge, T. Low isoniazid concentrations and outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am. J. Respir. Crit. Care. Med. 2003, 167, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Bock, N.N.; Sterling, T.R.; Hamilton, C.D.; Pachucki, C.; Wang, Y.C.; Conwell, D.S.; Mosher, A.; Samuels, M.; Vernon, A. A prospective, randomized, double-blind study of the tolerability of rifapentine 600, 900, and 1,200 mg plus isoniazid in the continuation phase of tuberculosis treatment. Am. J. Respir. Crit. Care. Med. 2002, 165, 1526–1530. [Google Scholar] [CrossRef]
- Lauzardo, M.; Ashkin, D. Optimizing the dose of rifapentine to treat tuberculosis. It’s elementary. Am. J. Respir. Crit. Care. Med. 2015, 191, 251–252. [Google Scholar] [CrossRef]
- Dorman, S.E.; Savic, R.M.; Goldberg, S.; Stout, J.E.; Schluger, N.; Muzanyi, G.; Johnson, J.L.; Nahid, P.; Hecker, E.J.; Heilig, C.M.; et al. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am. J. Respir. Crit. Care. Med. 2015, 191, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Weiner, M.; Egelund, E.F.; Engle, M.; Kiser, M.; Prihoda, T.J.; Gelfond, J.A.; Mac Kenzie, W.; Peloquin, C.A. Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J. Antimicrob. Chemother. 2014, 69, 1079–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podany, A.T.; Bao, Y.; Swindells, S.; Chaisson, R.E.; Andersen, J.W.; Mwelase, T.; Supparatpinyo, K.; Mohapi, L.; Gupta, A.; Benson, C.A.; et al. Efavirenz pharmacokinetics and pharmacodynamics in hiv-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin. Infect. Dis. 2015, 61, 1322–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, K.M.; George, J.M.; Pau, A.K.; Rupert, A.; Mehaffy, C.; De, P.; Dobos, K.M.; Kellogg, A.; McLaughlin, M.; McManus, M.; et al. Cytokine-mediated systemic adverse drug reactions in a drug-drug interaction study of dolutegravir with once-weekly isoniazid and rifapentine. Clin. Infect. Dis. 2018, 67, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzey, C.; Spigset, O. Genotyping of drug targets: A method to predict adverse drug reactions? Drug Saf. 2002, 25, 553–560. [Google Scholar] [CrossRef]
- Guzey, C.; Spigset, O. Genotyping as a tool to predict adverse drug reactions. Curr. Top. Med. Chem. 2004, 4, 1411–1421. [Google Scholar] [CrossRef]
- Wilke, R.A.; Lin, D.W.; Roden, D.M.; Watkins, P.B.; Flockhart, D.; Zineh, I.; Giacomini, K.M.; Krauss, R.M. Identifying genetic risk factors for serious adverse drug reactions: Current progress and challenges. Nat. Rev. Drug Discov. 2007, 6, 904–916. [Google Scholar] [CrossRef]
- Rioux, P.P. Clinical trials in pharmacogenetics and pharmacogenomics: Methods and applications. Am. J. Health. Syst. Pharm. 2000, 57, 887–898; quiz 899–901. [Google Scholar] [CrossRef]
- Daly, A.K. Pharmacogenomics of adverse drug reactions. Genome Med. 2013, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Hiratsuka, M.; Kishikawa, Y.; Takekuma, Y.; Matsuura, M.; Narahara, K.; Inoue, T.; Hamdy, S.I.; Endo, N.; Goto, J.; Mizugaki, M. Genotyping of the n-acetyltransferase2 polymorphism in the prediction of adverse drug reactions to isoniazid in japanese patients. Drug Metab. Pharmacokinet. 2002, 17, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Sotsuka, T.; Sasaki, Y.; Hirai, S.; Yamagishi, F.; Ueno, K. Association of isoniazid-metabolizing enzyme genotypes and isoniazid-induced hepatotoxicity in tuberculosis patients. In Vivo (Athens, Greece) 2011, 25, 803–812. [Google Scholar]
(n = 377) | Treatment Completed | Interrupted Due to Side Effects | Switched to 9H Due to Side Effects | Other * |
---|---|---|---|---|
Number | 337 | 29 | 8 | 3 |
% | 89.4% | 7.7% | 2.1% | 0.8% |
Variable | (n = 377) | Non-ADR (n = 193) | ADR (n = 184) |
---|---|---|---|
Age (year) | |||
≦35 | 96 | 53 | 43 |
36–55 | 169 | 88 | 81 |
56–64 | 83 | 37 | 46 |
≧65 | 29 | 15 | 14 |
Gender | |||
Male | 169 | 101 | 68 |
Female | 208 | 92 | 116 |
Body mass index (kg/m2) | 24.9 | 25 | 24.7 |
AST (U/L) | 25.11 | 24.95 | 25.32 |
ALT (U/L) | 27.08 | 26.98 | 27.1 |
Comorbidity (n = 144) | |||
Hypertension | 46 | 22 | 24 |
Diabetes mellitus | 21 | 12 | 9 |
HBV infection | 17 | 11 | 6 |
Heart disease | 8 | 4 | 4 |
Thalassemias | 5 | 1 | 4 |
Hyperlipidemia | 4 | 2 | 2 |
Allergic rhinitis | 4 | 4 | 0 |
Insomnia | 3 | 0 | 3 |
Hyperthyroidism | 3 | 2 | 1 |
Gastric ulcer | 4 | 0 | 4 |
Hyperthyroidism | 3 | 2 | 1 |
Hepatitis C | 2 | 0 | 2 |
Gout | 2 | 0 | 2 |
Lung cancer | 2 | 0 | 2 |
Dementia | 1 | 0 | 1 |
Breast cancer | 2 | 1 | 1 |
Proctitis | 1 | 0 | 1 |
Fatty liver | 1 | 0 | 1 |
Hyperuricemia | 1 | 1 | 0 |
Others | 14 | 8 | 6 |
Variable | ALL (n = 377) | Non-ADR (n = 193) | ADR (n = 184) | OR (95% C.I.) | p Value |
---|---|---|---|---|---|
CYP5A6 (rs28399433) | |||||
A/A | 235 (62.3%) | 116 (60.1%) | 119 (64.7%) | 1.000 (reference) | |
C/A | 100 (26.5%) | 54 (28.0%) | 46 (25.0%) | 0.830 (0.519–1.327) | p = 0.437 |
C/C | 42 (11.2%) | 23 (11.9%) | 19 (10.3%) | 0.805 (0.417–1.557) | p = 0.520 |
C/A+C/C | 142 (37.7%) | 77 (39.9%) | 65 (35.3%) | 0.823 (0.542–1.249) | p = 0.360 |
CYP2B6 (rs8192709) | |||||
T/T | 347 (92.0%) | 183 (94.8%) | 164 (89.1%) | 1.000 (reference) | |
T/C | 28 (7.5%) | 9 (4.7%) | 19 (10.3%) | 2.355 (1.037–5.351) | p = 0.041 * |
C/C | 2 (0.5%) | 1 (0.5%) | 1 (0.6%) | 1.116 (0.069–17.983) | p = 0.938 |
T/C+C/C | 30 (8.0%) | 10 (5.2%) | 20 (10.9%) | 2.231 (1.015–4.906) | p = 0.046 * |
CYP2C19 (rs4986893) | |||||
G/G | 342 (90.7%) | 180 (93.3%) | 162 (88.0%) | 1.000 (reference) | |
G/A | 34 (9.0%) | 12 (6.2%) | 22 (12.0%) | 2.037 (0.977–4.247) | p = 0.058 |
A/A | 1 (0.3%) | 1 (0.5%) | 0 (0.0%) | - | - |
G/A+A/A | 35 (9.3%) | 13 (6.7%) | 22 (12.0%) | 1.880 (0.917–3.854) | p = 0.085 |
CYP2C19 (rs12248560) | |||||
C/C | 375 (99.5%) | 191 (99.0%) | 184 (100.0%) | 1.000 (reference) | |
T/C | 2 (0.5%) | 2 (1.0%) | 0 (0.0%) | - | - |
T/T | 0 (0%) | 0 (0.0%) | 0 (0.0%) | - | - |
T/C+T/T | 2 (0.5%) | 2 (1.0%) | 0 (0.0%) | - | - |
CYP2E1 (rs2070676) | |||||
C/C | 243 (64.5%) | 134 (69.4%) | 109 (59.3%) | 1.000 (reference) | |
C/G | 124 (32.9%) | 54 (28.0%) | 70 (38.0%) | 1.594 (1.031–2.464) | p = 0.036 * |
G/G | 10 (2.6%) | 5 (2.6%) | 5 (2.7%) | 1.229 (0.347–4.356) | p = 0.749 |
C/G+G/G | 134 (35.5%) | 59 (30.6%) | 75 (40.8%) | 1.563 (1.022–2.389) | p = 0.039 * |
CYP2E1 (rs2515641) | |||||
C/C | 232 (61.5%) | 133 (68.9%) | 99 (53.8%) | 1.000 (reference) | |
C/T | 126 (33.4%) | 53 (27.5%) | 73 (39.7%) | 1.850 (1.193–2.870) | p = 0.006 * |
T/T | 19 (5.1%) | 7 (3.6%) | 12 (6.5%) | 2.303 (0.875–6.062) | p = 0.091 |
C/T+T/T | 145 (38.5%) | 60 (31.1%) | 85 (46.2%) | 1.903 (1.250–2.898) | p = 0.003 * |
NAT2 (rs1495741) | |||||
G/G | 116 (30.8%) | 63 (32.6%) | 53 (28.8%) | 1.000 (reference) | |
G/A | 166 (44.0%) | 94 (48.7%) | 72 (39.1%) | 0.910 (0.565–1.467) | p = 0.700 |
A/A | 95 (25.2%) | 36 (18.7%) | 59 (32.1%) | 1.948 (1.121–3.385) | p = 0.018 * |
G/A+A/A | 261 (69.2%) | 130 (67.4%) | 131 (71.2%) | 1.198 (0.773–1.857) | p = 0.420 |
NAT2 (rs1799930) | |||||
G/G | 219 (58.1%) | 112 (58.0%) | 107 (58.1%) | 1.000 (reference) | |
G/A | 128 (33.9%) | 62 (32.1%) | 66 (35.9%) | 1.114 (0.720–1.724) | p = 0.627 |
A/A | 30 (8.0%) | 19 (9.9%) | 11 (6.0%) | 0.606 (0.275–1.333) | p = 0.213 |
G/A+A/A | 158 (41.9%) | 81 (42.0%) | 77 (41.8%) | 0.995 (0.661–1.498) | p = 0.981 |
Variable | ALL (n = 754) | Non-ADR (n = 386) | ADR (n = 368) | OR (95% C.I.) | p Value |
---|---|---|---|---|---|
CYP5A6 (rs28399433) | |||||
A allele | 570 (75.6%) | 286 (74.1%) | 284 (77.2%) | 1.000 (reference) | |
C allele | 184 (24.4%) | 100 (25.9%) | 84 (22.8%) | 0.846 (0.606–1.181) | p = 0.325 |
CYP2B6 (rs8192709) | |||||
T allele | 722 (95.8%) | 375 (97.2%) | 347 (94.3%) | 1.000 (reference) | |
C allele | 32 (4.2%) | 11 (2.8%) | 21 (5.7%) | 2.063 (0.980–4.341) | p = 0.056 |
CYP2C19 (rs4986893) | |||||
G allele | 718 (95.2%) | 372 (96.4%) | 346 (94.0%) | 1.000 (reference) | |
A allele | 36 (4.8%) | 14 (3.6%) | 22 (6.0%) | 1.690 (0.851–3.355) | p = 0.134 |
CYP2C19 (rs12248560) | |||||
C allele | 752 (99.7%) | 384 (99.5%) | 368 (100.0%) | 1.000 (reference) | |
T allele | 2 (0.3%) | 2 (0.5%) | 0 (0.0%) | - | - |
CYP2E1 (rs2070676) | |||||
C allele | 610 (80.9%) | 322 (83.4%) | 288 (78.3%) | 1.000 (reference) | |
G allele | 144 (19.1%) | 64 (16.6%) | 80 (21.7%) | 1.398 (0.970–2.013) | p = 0.072 |
CYP2E1 (rs2515641) | |||||
C allele | 590 (78.3%) | 319 (82.6%) | 271 (73.6%) | 1.000 (reference) | |
T allele | 164 (21.7%) | 67 (17.4%) | 97 (26.4%) | 1.704 (1.200–2.421) | p = 0.003 * |
NAT2 (rs1495741) | |||||
G allele | 398 (52.8%) | 220 (57.0%) | 178 (48.4%) | 1.000 (reference) | |
A allele | 356 (47.2%) | 166 (43.0%) | 190 (51.6%) | 1.415 (1.062–1.885) | p = 0.018 * |
NAT2 (rs1799930) | |||||
G allele | 566 (75.1%) | 286 (74.1%) | 280 (76.1%) | 1.000 (reference) | |
A allele | 188 (24.9%) | 100 (25.9%) | 88 (23.9%) | 0.899 (0.646–1.251) | p = 0.528 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.-Y.; Tsao, S.-M.; Yang, W.-T.; Huang, W.-C.; Lin, C.-H.; Chen, W.-W.; Yang, S.-F.; Chiou, H.-L.; Huang, Y.-W. Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis. Int. J. Environ. Res. Public Health 2020, 17, 210. https://doi.org/10.3390/ijerph17010210
Yu Y-Y, Tsao S-M, Yang W-T, Huang W-C, Lin C-H, Chen W-W, Yang S-F, Chiou H-L, Huang Y-W. Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis. International Journal of Environmental Research and Public Health. 2020; 17(1):210. https://doi.org/10.3390/ijerph17010210
Chicago/Turabian StyleYu, Ya-Yen, Shih-Ming Tsao, Wen-Ta Yang, Wei-Chang Huang, Ching-Hsiung Lin, Wei-Wen Chen, Shun-Fa Yang, Hui-Ling Chiou, and Yi-Wen Huang. 2020. "Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis" International Journal of Environmental Research and Public Health 17, no. 1: 210. https://doi.org/10.3390/ijerph17010210
APA StyleYu, Y. -Y., Tsao, S. -M., Yang, W. -T., Huang, W. -C., Lin, C. -H., Chen, W. -W., Yang, S. -F., Chiou, H. -L., & Huang, Y. -W. (2020). Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis. International Journal of Environmental Research and Public Health, 17(1), 210. https://doi.org/10.3390/ijerph17010210