The Impact of Mind-Body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Abstraction
2.4. Methodological Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Methodological Quality
3.4. UPDRS (Unified Parkinson’s Disease Rating Scal) Rating Results
3.5. Timed Up and Go Test Score Results
3.6. Balance Function Score Results
3.7. Depression Test Score Results
3.8. Quality of Life Test Score Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schapira, A.H.V. Neurobiology and treatment of Parkinson’s disease. Trends Pharm. Sci. 2008, 30, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Oroz, M.C. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiolog ical mechanisms. Lancet Neurol. 2009, 8, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Ehrt, U.; Brønnick, K.; Leentjens, A.F. Depressive symptom profile in Parkinson’s disease: A comparison with depression in elderly patients without Parkinson’s disease. Int. J. Geriatr. Psychiatry 2006, 21, 252–258. [Google Scholar] [CrossRef]
- Aarsland, D.; Emre, M.; Lees, A. Practice parameter: Evaluation and treatment of depression, psychosis, and dementia in Parkinson’s disease (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2007, 68, 80. [Google Scholar] [CrossRef]
- Seppi, K.; Weintraub, D.; Coelho, M. The Movement Disorder Society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26, S42–S80. [Google Scholar] [CrossRef]
- Bernal-Pacheco, O.; Limotai, N.; Go, C.L. Non-motor manifestations in Parkinson’s disease. Neurologist 2012, 18, 1–16. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 2016, 22, S119–S122. [Google Scholar] [CrossRef]
- Bach, J.P.; Ziegler, U.; Deuschl, G. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov. Disord. 2011, 26, 2286–2290. [Google Scholar] [CrossRef]
- Hackney, M.E.; Earhart, G.M. Effects of dance on movement control in Parkinson’s disease: A comparison of Argentine tango and American ballroom. J. Rehabil. Med. 2009, 41, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, J.J.; Kwan, J.C.; Auyeung, M. The effects of yoga versus stretching and resistance training exercises on psychological distress for people with mild-to-moderate Parkinson’s disease: Study protocol for a randomized controlled trial. Trials 2017, 18, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, L.M.; Katzel, L.I.; Ivey, F.M. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson’s disease. JAMA Neurol. 2013, 70, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooney, G.M.; Dwan, K.; Greig, C.A. Exercise for depression. Cochrane Database Syst. Rev. 2013, 9. [Google Scholar] [CrossRef]
- Guan, X.H.; Li, B. Effect of Taijiquan Training on Cognitive Function and Social Function of Parkinson’s Patients. J. Nurs. Train. 2016, 31, 1684–1686. [Google Scholar]
- Zou, L.; Sasaki, J.; Wei, G.X. Effects of Mind-Body Exercises (Tai Chi/Yoga) on Heart Rate Variability Parameters and Perceived Stress: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2018, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wang, H.; Li, T. Effect of traditional Chinese mind-body exercise on disease activity, spinal mobility, and quality of life in patients with ankylosing spondylitis. Trav. Hum. 2017, 80, 1585–1597. [Google Scholar]
- Zou, L.; Yeung, A.; Quan, X. A systematic review and Meta-analysis of Mindfulness-based (Baduanjin) exercise for alleviating musculoskeletal pain and improving sleep quality in people with chronic diseases. Int. J. Environ. Res. Health 2018, 15, 206. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.H.; Yeh, N.C.; Wu, Y.F. Effects of Tai Chi Exercise on Reducing Falls and Improving Balance Performance in Parkinson’s Disease: A Meta-Analysis. Parkinson’s Dis. 2019. [Google Scholar] [CrossRef]
- Oken, B.S.; Kishiyama, S.; Zajdel, D. Randomized controlled trial of yoga and exercise in multiple sclerosis. Neurology 2004, 62, 2058–2064. [Google Scholar] [CrossRef]
- Reynolds, G.O.; Otto, M.W.; Ellis, T.D. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson’s Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2016, 31, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthrie, T.C.; Nelson, D.A. Influence of temperature changes on multiple sclerosis: A critical review of mechanisms and research potential. J. Neurol. Sci. 1995, 129, 1–8. [Google Scholar] [CrossRef]
- Zigmond, M.J.; Cameron, J.L.; Hoffer, B.J.; Smeyne, R.J. Neurorestoration by physical exercise: Moving forward. Parkinsonism Relat. Disord. 2012, 18, S147–S150. [Google Scholar] [CrossRef]
- Zou, L.; Wang, C.; Yeung, A. A Review Study on the beneficial effects of Baduanjin. J. Altern. Complement. Med. 2018, 24, 324–335. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Pyfer, D.; Kielwein, K.; Fimmers, R.; Klockgether, T.; Wüllner, U. Qigong exercise for the symptoms of Parkinson’s disease: A randomized, controlled pilot study. Mov. Disord. 2006, 21, 543–548. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.Y.; Chae, Y.; Kim, M.Y. Turo (Qi Dance) program for parkinson’s disease patients: randomized, assessor blind, waiting-list control, partial crossover study. Explore 2018, 14, 216–223. [Google Scholar] [CrossRef]
- Lei, L.X. Effects of Health Qigong Exercises on Relieving Symptoms of Parkinson’s Disease. Evid.-Based Complement. Altern. Med. 2016, 31, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Wang, Z.R.; Shang, M.Q. Effects of Health Qigong on treatments of Parkinson’s disease. Chin. J. Neuroimmunol. Neurol. 2017, 24, 34–37. [Google Scholar]
- Guo, Y.D. Effects of Health Qigong on Motor Function in Patients with Mild to Moderate Parkinson’s Disease. J. Shanghai Univ. Sport.Educ. 2018, 5, 16–20. [Google Scholar]
- Fan, J.; Liu, X.L.; Kong, M.; Wang, X.L.; Yi, L.Y.; Zhang, Y. Effects of exercise qigong on mood state and cognition in moderate Parkinson’s disease. Chin. J. Sports Med. 2017, 36, 143–146. [Google Scholar]
- Boulgarides, L.K.; Barakatt, E.; Coleman-Salgado, B. Measuring the Effect of an Eight -Week Adaptive Yoga Program on the Physical and Psychological Status of Individuals with Parkinson’s Disease. A Pilot Study. Int. J. Yoga Ther. 2014, 24, 31–39. [Google Scholar]
- Guan, X.H.; Zhu, X.G.; Liu, J.M. Influence of Yoga on balancing ability and fear of falling in patients with early Parkinson’s disease. Nurs. Res. China 2017, 31, 1274–1276. [Google Scholar]
- Qiu, Q.H. Effect of “Yoga + Spinning” Training on Motor Dysfunction in Patients with Parkinson’s Disease. J. Bethune Med. Sci. 2018, 16, 397–398. [Google Scholar]
- Van-Puymbroeck, M.; Alysha, W.; Brent, L.W. Functional Improvements in Parkinson’s Disease Following a Randomized Trial of Yoga. Evid. Based Complement Alternat. Med. 2018. [Google Scholar] [CrossRef]
- Li, F.; Harmer, P.; Fitzgerald, K. Tai Chi and Postural Stability in Patients with Parkinson’s Disease. N. Engl. J. Med. 2012, 366, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Gloria, V.D.; Kamila, O.; Hausdorff, J.M. Tai Chi for Reducing Dual-task Gait Variability, a Potential Mediator of Fall Risk in Parkinson’s Disease: A Pilot Randomized Controlled Trial. Glob. Adv. Health Med. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.H.; Liu, Y.; Zhang, Q. Influence of Tai Chi Exercise on the Mental Health and Quality of Life in Patients with Parkinson’s Disease. China J. Health Psychol. 2016, 24, 1538–1541. [Google Scholar]
- Choi, H.J.; Garber, C.E.; Jun, T.W. Therapeutic Effects of Tai Chi in Patients with Parkinson’s Disease. ISRN Neurol. 2013, 28, 89–92. [Google Scholar] [CrossRef]
- Gao, Q.; Leung, A.; Yang, Y. Effects of Tai Chi on balance and fall prevention in Parkinson’s disease: A randomized controlled trial. Clin. Rehabil. 2014, 28, 748–753. [Google Scholar] [CrossRef]
- Lu, F.L. Effect of Taijiquan on the quality of life of patients with early-stage Parkinson’s disease. Chin. J. Gerontol. 2017, 37, 5121–5123. [Google Scholar]
- Ji, S.Q.; Mao, Z.J.; Yang, Q.M. Effectiveness of Tai Chi for Parkinson disease. Chin. J. Rehabil. 2016, 31, 51–53. [Google Scholar]
- Zhu, Y.; Li, J.X.; Li, N. Effect of Taijiquan on Motion Control for Parkinson’s Disease at Early Stage. Chin. J. Rehabil. Theory Pract. 2011, 17, 355–358. [Google Scholar]
- Wu, T.T.; Wang, Y.Q.; Luo, X.R.; Ye, S. Effects of Tai Chi exercise on cognition and health-related quality of life in patients with Parkinson’s disease. Chin. J. Rehabil. 2018, 33, 95–97. [Google Scholar]
- Guan, X.H.; Tang, X.Z.; Liu, J.M. Effect of Tai Chi training on walking ability and fear of falling of patients with Parkinson’s disease. Nurs. Res. China 2016, 30, 3514–3517. [Google Scholar]
- Guan, X.H.; Tang, X.Z.; Dong, Y.H. Effect of Taijiquan training on walking ability and fear of falling in patients with early Parkinson’s disease. Chin. J. Gerontol. 2018, 38, 4962–4963. [Google Scholar]
- Wang, J.Z.; Peng, Y.J.; Zheng, Z.X. Research of the Effect of Taijiquan Sport in the Treatment of Early Parkinson’s Patients with Depression. J. Med. Theory Pract. 2016, 29, 3309–3311. [Google Scholar]
- Shulman, L.M.; Gruber-Baldini, A.L.; Anderson, K.E. The clinically important difference on the unified Parkinson’s disease rating scale. Arch. Neurol. 2010, 67, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wang, H.; Xiao, Z.; Fang, Q.; Zhang, M.; Li, T.; Du, G.; Liu, Y. Tai chi for health benefits in patients with multiple sclerosis: A systematic review. PLoS ONE 2017, 12, e0170212. [Google Scholar]
- Zou, L.; Wang, C.; Chen, K.; Shu, Y.; Chen, X.; Luo, L.; Zhao, X. The Effect of Taichi Practice on Attenuating Bone Mineral Density Loss: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2017, 14, 1000. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wang, C.; Tian, Z.; Wang, H.; Shu, Y. Effect of Yang-Style Tai Chi on Gait Parameters and Musculoskeletal Flexibility in Healthy Chinese Older Women. Sport 2017, 5, 52. [Google Scholar] [CrossRef]
- Zou, L.; Han, J.; Yeung, A.S.; Hui, S.; Tsang, W.; Ren, Z.; Wang, L. Effects of Tai Chi on Lower Limb Proprioception in Adults Aged Over 55: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Muehlbauer, T.; Zahner, L. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2012, 41, 377–400. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zou, L.; Loprinzi, P.D.; Quan, M.; Huang, T. Effects of open versus closed skill exercise on cognitive function: A systematic review. Front. Psychol. 2019, 10, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Loprinzi, P.D.; Yeung, A.S.; Zeng, N.; Huang, T. The beneficial effects of mind-body exercises for people with mild cognitive impairment: A systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1556–1573. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Rezaei, N. Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis. J. Autism Dev. Disord. 2017, 47, 1018–1029. [Google Scholar] [CrossRef]
- Schmolesky, M.T.; Webb, D.L.; Hansen, R.A. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sports Sci. Med. 2013, 12, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Gillies, G.E.; Pienaar, I.S.; Vohra, S. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Shulman, L.M. Gender differences in Parkinson’s disease. Gend. Med. 2007, 4, 8–18. [Google Scholar] [CrossRef]
- Haaxma, C.A.; Bloem, B.R.; Borm, C.R. Gender differences in Parkinson’s disease. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Solla, P.; Cannas, A.; Ibba, F.C. Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson’s disease. J. Neurol. Sci. 2012, 323, 33–39. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Balash, J.; Giladi, N. Effects of cognitive challenge on gait variability in patients with Parkinson’s disease. J. Geriatr. Psychiatry Neurol. 2003, 38, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Volkow, N.D.; Fowler, J.S. PET studies of the effects of aerobic exercise on human striatal dopamine release. J. Nucl. Med. 2000, 41, 1352–1356. [Google Scholar] [PubMed]
- Rasmussen, P.; Brassard, P.; Adser, H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009, 94, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Ueki, Y.; Kato, T. Changes in striatal dopamine release associated with human motor-skill acquisition. PLoS ONE 2012, 7, e31728. [Google Scholar] [CrossRef]
- Xu, Q.; Park, Y.; Huang, X. Physical activities and future risk of Parkinson’s disease. Neurology 2010, 75, 341–348. [Google Scholar] [CrossRef]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Loprinzi, P.D.; Yang, L.; Liu, J.; Liu, S.; Zou, L. The Beneficial Effects of Traditional Chinese Exercises for Adults with Low Back Pain: A Meta-Analysis of Randomized Controlled Trials. Medicina 2019, 55, 118. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Zhang, Y.; Yang, L.; Loprinzi, P.D.; Yeung, A.S.; Kong, J.; Chen, K.W.; Song, W.; Xiao, T.; Li, H. Are Mindful Exercises Safe and Beneficial for Treating Chronic Lower Back Pain? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2019, 8, 628. [Google Scholar] [CrossRef] [Green Version]
First Author, Year, Country | Sample Size | Age (Rang) | Treatment Duration (Week) | Experimental Group Intervention | Control Group Intervention | Main Outcome Assessments |
---|---|---|---|---|---|---|
Marieke, et al. (2018) US | 30 (10%) | 59~75 | 8 | YG:2/week Yoga | CG:usual care | UPDRS/Mini-BEST |
Qiu (2018) China | 80 (8.8%) | 59~71 | 24 | YG:(60 min Yoga + 30 min bicycle) × (2~3)/week + UC | CG:40–60 min/day + usual care | UPDRS/ADL/BBS/MDRSPD |
Guan (2017) China | 100 | 65~74 | 24 | YG:Yoga + UC | CG:usual care | TUGT |
Boulgarides, et al. (2014) US | 10 | 43~77 | 8 | YG:60 min/week (Yoga) | CG:wait-list | HADS/UPDRS/BBS |
Lee, et al. (2018) Korea | 32 (18.8%) | 58~73 | 8 | QG:2 × 60 min/week (Qigong + dance) | CG:waiting-list | UPDRS/BBS/BDI/PDQL |
Tanja, et al. (2006) German | 56 (12.5%) | 56~71 | 8 | QG:60 min/week Qigong + Med | CG:Med | UPDRSIII |
Liu (2016) China | 54 (24%) | 59~72 | 10 | QG:5 × 60 min/week Qigong + Med | CG:Med | TUG |
Liu, et al. (2017) China | 52 (21.2%) | 50~65 | 10 | QG:5 × 60 min/week Qigong + Med | CG:Med | UPDRS III/TUG |
Guo (2018) China | 40 | 57~71 | 12 | QG:2 × (60~80) min/week Qigong | CG:usual care | UPDRSIII/TUGT/Mini-BEST |
Fan, et al. (2017) China | 36 (5.6%) | 42~86 | 8 | QG:5 × 60 min/ week Qigong | CG:usual care | POMS |
Li, et al (2012) US | 195 (9.7%) | 40~85 | 24 | TC:2 × 60 min/week Qigong | CG1:Resistance CG2:Stretching | UPDRSⅢ/TUG |
Gloria, et al. (2018) US | 32 (15.6%) | 40~75 | 24 | TC:2 × 60/week Tai Chi | CG:usual care | UPDRS/TUG/PDQ-39 |
Guan, Liu, et al. (2016) China | 58 | 64~75 | 12 | TC:4 × 60 min/week Tai Chi | CG:usual care | SCL-90/ WHO-QoL-BREF |
Choi, et al. (2013) Korea | 22 (9%) | 53~73 | 12 | TC:3 × 60 min/week Tai Chi | CG:non-exercise | UPDRS/ADL/TUG |
Gao, et al. (2014) China | 40 (5%) | 59~78 | 12 | TC:3 × 60 min/week Tai Chi + Med | CG:Med | UPDRS/TUGT/ BBS |
Lu (2017) China | 16 | 60~76 | 8 | TC:5 × (40~60) min/week TaiChi + Med | CG:Med | UPDRSⅢ/BBS |
Ji, et al. (2016) China | 38 (15.8%) | 44~71 | 12 | TC:60 min/day Tai Chi + Med | CG:Med | UPDRSⅢ/BBS |
Zhu, et al. (2011) China | 40 (5%) | 52~73 | 4 | TC:5 day × (30~40) ×2 Tai Chi + Med | CG:Med+(40~60) minx5day | UPDRSⅢ/BBS |
Wu (2018) China | 55 (5.5%) | 66~70 | 16 | TC:4 × 40 min/week Tai Chi + Med | CG:Med+ usually exercise | PDQ-39 |
Guan, Tang, et al. (2016) China | 62 | 65~76 | 12 | TC:4 × 60 min/week Tai Chi + UE | CG:usual exercise | TUGT/BBS |
Guan, et al. (2018) China | 81 (1.3%) | 62~75 | 24 | TC:4 × 60 min/week Tai Chi + UE | CG:Usual Care | TUGT/BBS |
Wang, et al. (2016) China | 80 | 55~75 | 16 | TC:2 × (50~60) min/day Tai Chi + Med | CG:Med | UPDRSⅢ/BBS/HAMD |
Study | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 | Item 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Marieke, et al. (2018) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 7 |
Qiu (2018) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Guan (2017) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
Boulgarides (2014) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Lee et al. (2018) | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 7 |
Tanja et al. (2006) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 8 |
Liu (2016) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5 |
Liu (2017) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5 |
Guo (2018) | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Fan et al. (2017) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
Li et al. (2012) | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 8 |
Gloria, et al. (2018) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 7 |
Guan, Liu et al. (2016) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Choi et al. (2013) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 7 |
Gao et al. (2014) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
Lu (2017) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Ji et al. (2016) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5 |
Zhu et al. (2011) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 7 |
Wu. (2018) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
Guan, Tang, et al. (2016) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Guan et al. (2018) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
Wang et al. (2016) | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Figure | N | SMD (95% CI) | I2 (%) | p-Value | (SMD) p-Value | |
---|---|---|---|---|---|---|
Gender | ||||||
Male > Female | 10 | −0.59 (−0.81,−0.37) | 37% | 0.12 | 0.000 | |
Male = Female | 1 | 0.37 (−0.42,1.16) | — | — | 0.000 | |
Male < Female | 4 | −1.16 (−2.28,−0.03) | 92% | 0.000 | 0.04 | |
Hoehn-Yahr | ||||||
1–2 | 5 | −1.15 (−1.89,−0.41) | 82% | 0.000 | 0.002 | |
2–3 | 4 | −0.55 (−1.60,0.49) | 85% | 0.000 | 0.30 |
Feature | Number | SMD (95% CI) | I2 (%) | p-Value | (SMD) p-Value |
---|---|---|---|---|---|
Invention | Time | ||||
≤ 8 | 3 | −0.88 (−1.39, −0.38) | 25% | 0.26 | 0.0006 |
> 8 | 2 | −2.66 (−4.37, −0.94) | 92% | 0.0003 | 0.002 |
Invention | medicine | ||||
Report | 3 | −1.96 (−3.58, −0.35) | 95% | 0.000 | 0.02 |
Non-Report | 2 | −1.10 (−1.76, −0.45) | 19% | 0.27 | 0.0009 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Wang, L.; Liu, S.; Zhu, L.; Loprinzi, P.D.; Fan, X. The Impact of Mind-Body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 31. https://doi.org/10.3390/ijerph17010031
Jin X, Wang L, Liu S, Zhu L, Loprinzi PD, Fan X. The Impact of Mind-Body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2020; 17(1):31. https://doi.org/10.3390/ijerph17010031
Chicago/Turabian StyleJin, Xiaohu, Lin Wang, Shijie Liu, Lin Zhu, Paul Dinneen Loprinzi, and Xin Fan. 2020. "The Impact of Mind-Body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 17, no. 1: 31. https://doi.org/10.3390/ijerph17010031
APA StyleJin, X., Wang, L., Liu, S., Zhu, L., Loprinzi, P. D., & Fan, X. (2020). The Impact of Mind-Body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 17(1), 31. https://doi.org/10.3390/ijerph17010031